Deep Neural Network-Based Storey Drift Modelling of Precast Concrete Structures Using RStudio
In this research, storey drift has been determined using Deep neural networks (DNN Keras). DNN Keras has various hyper tuning parameters (hidden layer, drop out layer, epochs, batch size and activation function) that make it capable to model complex problems. Building height, number of bays, number...
Guardado en:
Autores principales: | Nitin Dahiya, Babita Saini, H. Chalak |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Pouyan Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/094e422d64534310bdb359e84b8e86c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Seismic performance of an existing low-rise RC building considering the addition of a new storey
por: Gunes,Baris, et al.
Publicado: (2019) -
The Relationship Between Storey of Buildings and Fall Risk
por: Ching-Yao Tsai, et al.
Publicado: (2021) -
Performance-Based Concept for Design of Structural Silicone Joints in Façades Exposed to Earthquake
por: V. Nardini, et al.
Publicado: (2016) -
Evaluation of Low-Drift Nozzles in Agrochemical Applications in Orchards
por: Behmer,Sergio, et al.
Publicado: (2010) -
Analysis of Gastrointestinal Acoustic Activity Using Deep Neural Networks
por: Jakub Ficek, et al.
Publicado: (2021)