A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys
Abstract The class of 9–12% Cr ferritic-martensitic alloys (FMA) and austenitic stainless steels have received considerable attention due to their numerous applications in high temperature power generation industries. To design high strength steels with prolonged service life requires a thorough und...
Guardado en:
Autores principales: | Osman Mamun, Madison Wenzlick, Jeffrey Hawk, Ram Devanathan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/094eb6936e194c509aa2d4fd340cdf77 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels
por: Osman Mamun, et al.
Publicado: (2021) -
Amorphous martensite in β-Ti alloys
por: Long Zhang, et al.
Publicado: (2018) -
Influence of C and N on Strain-Induced Martensite Formation in Fe-15Cr-7Mn-4Ni-0.5Si Austenitic Steel
por: Caroline Quitzke, et al.
Publicado: (2021) -
Surface Strengthening of High-Alloyed Martensitic Steel by Staged Nitriding
por: Bibikov Petr, et al.
Publicado: (2021) -
Machine learning assisted prediction of the Young’s modulus of compositionally complex alloys
por: Hrishabh Khakurel, et al.
Publicado: (2021)