Conditional Variational Autoencoder for Learned Image Reconstruction
Learned image reconstruction techniques using deep neural networks have recently gained popularity and have delivered promising empirical results. However, most approaches focus on one single recovery for each observation, and thus neglect information uncertainty. In this work, we develop a novel co...
Guardado en:
Autores principales: | Chen Zhang, Riccardo Barbano, Bangti Jin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/09695f2192ce4215aa4579534d43eb9d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Propeller Speed Control System on Autonomous Quadcopter with Variations in Load Fulcrum Point
por: Ratna Aisuwarya, et al.
Publicado: (2021) -
Extremal Solutions for Caputo Conformable Differential Equations with p-Laplacian Operator and Integral Boundary Condition
por: Zhongqi Peng, et al.
Publicado: (2021) -
Alternative Definitions of Complexity for Practical Applications of Model Selection Criteria
por: Murari Andrea, et al.
Publicado: (2021) -
Privacy-preserving inpainting for outsourced image
por: Fang Cao, et al.
Publicado: (2021) -
Edge Detection to Indication Brain Tumor Using Sobel and Morphological Operations Methods Based on Image Magnetic Resonance Imaging
por: Oscar Adriyanto, et al.
Publicado: (2018)