Nonsmooth spectral gradient methods for unconstrained optimization
To solve nonsmooth unconstrained minimization problems, we combine the spectral choice of step length with two well-established subdifferential-type schemes: the gradient sampling method and the simplex gradient method. We focus on the interesting case in which the objective function is continuously...
Guardado en:
Autores principales: | Milagros Loreto, Hugo Aponte, Debora Cores, Marcos Raydan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/09769c1ca2fc49daa0950264b364bf55 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness
por: Martin Schmidt
Publicado: (2015) -
On the construction of quadratic models for derivative-free trust-region algorithms
por: Adriano Verdério, et al.
Publicado: (2017) -
A branch-and-cut algorithm for the target visitation problem
por: Achim Hildenbrandt
Publicado: (2019) -
A modification of the αBB method for box-constrained optimization and an application to inverse kinematics
por: Gabriele Eichfelder, et al.
Publicado: (2016) -
An exact approach for the multi-constraint graph partitioning problem
por: Diego Recalde, et al.
Publicado: (2020)