PM2.5 Concentration Forecasting in Industrial Parks Based on Attention Mechanism Spatiotemporal Graph Convolutional Networks
Industrial parks are one of the main sources of air pollution; the ability to forecast PM2.5, the main pollutant in the industrial park, is of great significance to the health of the workers in the industrial park and environmental governance, which can improve the decision-making ability of environ...
Guardado en:
Autores principales: | Qingtian Zeng, Chao Wang, Geng Chen, Hua Duan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0989b27f8946454fbb04cbec5edbced8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic recognition of pulse repetition interval modulation using temporal convolutional network
por: Abolfazl Dadgarnia, et al.
Publicado: (2021) -
Siamese tracking combing frequency channel attention with adaptive template
por: Haibo Pang, et al.
Publicado: (2021) -
Efficient Semantic Enrichment Process for Spatiotemporal Trajectories
por: Bin Zhao, et al.
Publicado: (2021) -
Deriving Design Knowledge Graph for Complex Sociotechnical Systems Using the AIA Design Thinking
por: Tao Shen, et al.
Publicado: (2021) -
Dynamic Forecasting Algorithm of Inbound Ice and Snow Tourism in China Based on Improved Deep Confidence Network
por: Yuguang Zhao, et al.
Publicado: (2021)