TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8
Summary: Standard transcriptome-wide association study (TWAS) methods first train gene expression prediction models using reference transcriptomic data and then test the association between the predicted genetically regulated gene expression and phenotype of interest. Most existing TWAS tools requir...
Guardado en:
Autores principales: | Randy L. Parrish, Greg C. Gibson, Michael P. Epstein, Jingjing Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0991e4914aff475099fea18687efd5c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
LORSEN: Fast and Efficient eQTL Mapping With Low Rank Penalized Regression
por: Cheng Gao, et al.
Publicado: (2021) -
Trait correlated expression combined with eQTL and ASE analyses identified novel candidate genes affecting intramuscular fat
por: Yan Liu, et al.
Publicado: (2021) -
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
por: Matteo D’Antonio, et al.
Publicado: (2021) -
Using Crop Databases to Explore Phenotypes: From QTL to Candidate Genes
por: Anne V. Brown, et al.
Publicado: (2021) - Nonparametric statistics and mixture models a Festschrift in honor of Thomas P. Hettmansperger, the Pennsylvania State University, USA, 23-24 May 2008 /