A university small satellite thermal control modeling and analysis in the post-mission phase

This work includes the thermal control analysis of a small spacecraft in the post-mission phase. The satellite internal component distribution has been modified to fulfill all thermal requirements when using a passive thermal control system. In the post-mission phase, the satellite will be used by t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elhefnawy Ahmed, Elmaihy Ali, Elweteedy Ahmed
Formato: article
Lenguaje:EN
Publicado: University of Belgrade - Faculty of Mechanical Engineering, Belgrade 2021
Materias:
Acceso en línea:https://doaj.org/article/0995ee638c3c4d2baaaf49fd94eea919
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This work includes the thermal control analysis of a small spacecraft in the post-mission phase. The satellite internal component distribution has been modified to fulfill all thermal requirements when using a passive thermal control system. In the post-mission phase, the satellite will be used by the radio Amateur Satellite Corporation (AMSAT) community as a transponder, fully using the AMSAT payload that will maintain active and shall last at least 2 years. Thermal Desktop software is introduced for the mentioned spacecraft. The final analysis predictions show that the passive thermal control system maintains all satellite element's temperatures within their temperature limits. The temperature variation of +X solar panel is 75 °C which is less than experienced by +Z and -Z panels, which are 100 °C. The temperature change on equipment agrees with their panels. Compared with a specialized thermal analysis, software package (ESATAN-TMSs) verified the integrity of the results.