Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks

The article shows the possibility of using modern methods of artificial intelligence to calculate the yield of biomass of crops according to the given set input data (fertilizer doses, agrochemical parameters of the soil, productivity). The study reflects the results of testing a model of a compute...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vasyl Ivanovych Lopushniak, Halyna Myhaylovna Hrytsuliak, Anatoliy Viktorovych Bykin, Nadia Petryvna Bordyuzha, Larysa Oleksandryvna Semenko, Myroslava Stepanivna Polutrenko, Yulia Zinoviyivna Kotsyubynska
Formato: article
Lenguaje:EN
Publicado: Polish Society of Ecological Engineering (PTIE) 2021
Materias:
Acceso en línea:https://doaj.org/article/09a53f710fc643749422b8b4b8edcebb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The article shows the possibility of using modern methods of artificial intelligence to calculate the yield of biomass of crops according to the given set input data (fertilizer doses, agrochemical parameters of the soil, productivity). The study reflects the results of testing a model of a computer program of an artificial neural network, which allowed forecasting the yield of Panicum virgatum L (Switchgrass) depending on the joint application of fertilizers mineral and precipitate. On the basis of the calculations, the obtained model of productivity of vegetative mass of switchgrass shows a high level of forecasting efficiency (up to 97%). According to the results of experimental studies, the use of sewage sludge at a doses of 20 – 40 t/ha provides a dry biomass yield of Panicum virgatum L (Switchgrass) in the range of 13.1 - 20.3 t/ha, which is 3.4 – 7.2 t/ha more than in the option without fertilizer.