Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks

The article shows the possibility of using modern methods of artificial intelligence to calculate the yield of biomass of crops according to the given set input data (fertilizer doses, agrochemical parameters of the soil, productivity). The study reflects the results of testing a model of a compute...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vasyl Ivanovych Lopushniak, Halyna Myhaylovna Hrytsuliak, Anatoliy Viktorovych Bykin, Nadia Petryvna Bordyuzha, Larysa Oleksandryvna Semenko, Myroslava Stepanivna Polutrenko, Yulia Zinoviyivna Kotsyubynska
Formato: article
Lenguaje:EN
Publicado: Polish Society of Ecological Engineering (PTIE) 2021
Materias:
Acceso en línea:https://doaj.org/article/09a53f710fc643749422b8b4b8edcebb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:09a53f710fc643749422b8b4b8edcebb
record_format dspace
spelling oai:doaj.org-article:09a53f710fc643749422b8b4b8edcebb2021-11-04T08:03:23ZPrognostic Models of Panicum virgatum L. Using Artificial Neural Networks2299-899310.12911/22998993/142958https://doaj.org/article/09a53f710fc643749422b8b4b8edcebb2021-12-01T00:00:00Zhttp://www.jeeng.net/Prognostic-Models-of-Panicum-virgatum-L-Using-Artificial-Neural-Networks,142958,0,2.htmlhttps://doaj.org/toc/2299-8993The article shows the possibility of using modern methods of artificial intelligence to calculate the yield of biomass of crops according to the given set input data (fertilizer doses, agrochemical parameters of the soil, productivity). The study reflects the results of testing a model of a computer program of an artificial neural network, which allowed forecasting the yield of Panicum virgatum L (Switchgrass) depending on the joint application of fertilizers mineral and precipitate. On the basis of the calculations, the obtained model of productivity of vegetative mass of switchgrass shows a high level of forecasting efficiency (up to 97%). According to the results of experimental studies, the use of sewage sludge at a doses of 20 – 40 t/ha provides a dry biomass yield of Panicum virgatum L (Switchgrass) in the range of 13.1 - 20.3 t/ha, which is 3.4 – 7.2 t/ha more than in the option without fertilizer.Vasyl Ivanovych LopushniakHalyna Myhaylovna HrytsuliakAnatoliy Viktorovych BykinNadia Petryvna BordyuzhaLarysa Oleksandryvna SemenkoMyroslava Stepanivna PolutrenkoYulia Zinoviyivna KotsyubynskaPolish Society of Ecological Engineering (PTIE)articlebiomassartificial neural networksproductivityprecipitateartificial intelligenceswitchgrassEnvironmental technology. Sanitary engineeringTD1-1066Environmental sciencesGE1-350ENJournal of Ecological Engineering, Vol 22, Iss 11, Pp 62-71 (2021)
institution DOAJ
collection DOAJ
language EN
topic biomass
artificial neural networks
productivity
precipitate
artificial intelligence
switchgrass
Environmental technology. Sanitary engineering
TD1-1066
Environmental sciences
GE1-350
spellingShingle biomass
artificial neural networks
productivity
precipitate
artificial intelligence
switchgrass
Environmental technology. Sanitary engineering
TD1-1066
Environmental sciences
GE1-350
Vasyl Ivanovych Lopushniak
Halyna Myhaylovna Hrytsuliak
Anatoliy Viktorovych Bykin
Nadia Petryvna Bordyuzha
Larysa Oleksandryvna Semenko
Myroslava Stepanivna Polutrenko
Yulia Zinoviyivna Kotsyubynska
Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks
description The article shows the possibility of using modern methods of artificial intelligence to calculate the yield of biomass of crops according to the given set input data (fertilizer doses, agrochemical parameters of the soil, productivity). The study reflects the results of testing a model of a computer program of an artificial neural network, which allowed forecasting the yield of Panicum virgatum L (Switchgrass) depending on the joint application of fertilizers mineral and precipitate. On the basis of the calculations, the obtained model of productivity of vegetative mass of switchgrass shows a high level of forecasting efficiency (up to 97%). According to the results of experimental studies, the use of sewage sludge at a doses of 20 – 40 t/ha provides a dry biomass yield of Panicum virgatum L (Switchgrass) in the range of 13.1 - 20.3 t/ha, which is 3.4 – 7.2 t/ha more than in the option without fertilizer.
format article
author Vasyl Ivanovych Lopushniak
Halyna Myhaylovna Hrytsuliak
Anatoliy Viktorovych Bykin
Nadia Petryvna Bordyuzha
Larysa Oleksandryvna Semenko
Myroslava Stepanivna Polutrenko
Yulia Zinoviyivna Kotsyubynska
author_facet Vasyl Ivanovych Lopushniak
Halyna Myhaylovna Hrytsuliak
Anatoliy Viktorovych Bykin
Nadia Petryvna Bordyuzha
Larysa Oleksandryvna Semenko
Myroslava Stepanivna Polutrenko
Yulia Zinoviyivna Kotsyubynska
author_sort Vasyl Ivanovych Lopushniak
title Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks
title_short Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks
title_full Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks
title_fullStr Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks
title_full_unstemmed Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks
title_sort prognostic models of panicum virgatum l. using artificial neural networks
publisher Polish Society of Ecological Engineering (PTIE)
publishDate 2021
url https://doaj.org/article/09a53f710fc643749422b8b4b8edcebb
work_keys_str_mv AT vasylivanovychlopushniak prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks
AT halynamyhaylovnahrytsuliak prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks
AT anatoliyviktorovychbykin prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks
AT nadiapetryvnabordyuzha prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks
AT larysaoleksandryvnasemenko prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks
AT myroslavastepanivnapolutrenko prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks
AT yuliazinoviyivnakotsyubynska prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks
_version_ 1718445002467573760