Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks
The article shows the possibility of using modern methods of artificial intelligence to calculate the yield of biomass of crops according to the given set input data (fertilizer doses, agrochemical parameters of the soil, productivity). The study reflects the results of testing a model of a compute...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Polish Society of Ecological Engineering (PTIE)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/09a53f710fc643749422b8b4b8edcebb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:09a53f710fc643749422b8b4b8edcebb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:09a53f710fc643749422b8b4b8edcebb2021-11-04T08:03:23ZPrognostic Models of Panicum virgatum L. Using Artificial Neural Networks2299-899310.12911/22998993/142958https://doaj.org/article/09a53f710fc643749422b8b4b8edcebb2021-12-01T00:00:00Zhttp://www.jeeng.net/Prognostic-Models-of-Panicum-virgatum-L-Using-Artificial-Neural-Networks,142958,0,2.htmlhttps://doaj.org/toc/2299-8993The article shows the possibility of using modern methods of artificial intelligence to calculate the yield of biomass of crops according to the given set input data (fertilizer doses, agrochemical parameters of the soil, productivity). The study reflects the results of testing a model of a computer program of an artificial neural network, which allowed forecasting the yield of Panicum virgatum L (Switchgrass) depending on the joint application of fertilizers mineral and precipitate. On the basis of the calculations, the obtained model of productivity of vegetative mass of switchgrass shows a high level of forecasting efficiency (up to 97%). According to the results of experimental studies, the use of sewage sludge at a doses of 20 – 40 t/ha provides a dry biomass yield of Panicum virgatum L (Switchgrass) in the range of 13.1 - 20.3 t/ha, which is 3.4 – 7.2 t/ha more than in the option without fertilizer.Vasyl Ivanovych LopushniakHalyna Myhaylovna HrytsuliakAnatoliy Viktorovych BykinNadia Petryvna BordyuzhaLarysa Oleksandryvna SemenkoMyroslava Stepanivna PolutrenkoYulia Zinoviyivna KotsyubynskaPolish Society of Ecological Engineering (PTIE)articlebiomassartificial neural networksproductivityprecipitateartificial intelligenceswitchgrassEnvironmental technology. Sanitary engineeringTD1-1066Environmental sciencesGE1-350ENJournal of Ecological Engineering, Vol 22, Iss 11, Pp 62-71 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
biomass artificial neural networks productivity precipitate artificial intelligence switchgrass Environmental technology. Sanitary engineering TD1-1066 Environmental sciences GE1-350 |
spellingShingle |
biomass artificial neural networks productivity precipitate artificial intelligence switchgrass Environmental technology. Sanitary engineering TD1-1066 Environmental sciences GE1-350 Vasyl Ivanovych Lopushniak Halyna Myhaylovna Hrytsuliak Anatoliy Viktorovych Bykin Nadia Petryvna Bordyuzha Larysa Oleksandryvna Semenko Myroslava Stepanivna Polutrenko Yulia Zinoviyivna Kotsyubynska Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks |
description |
The article shows the possibility of using modern methods of artificial intelligence to calculate the yield of biomass of crops according to the given set input data (fertilizer doses, agrochemical parameters of the soil, productivity). The study reflects the results of testing a model of a computer program of an artificial neural network, which allowed forecasting the yield of Panicum virgatum L (Switchgrass) depending on the joint application of fertilizers mineral and precipitate.
On the basis of the calculations, the obtained model of productivity of vegetative mass of switchgrass shows a high level of forecasting efficiency (up to 97%).
According to the results of experimental studies, the use of sewage sludge at a doses of 20 – 40 t/ha provides a dry biomass yield of Panicum virgatum L (Switchgrass) in the range of 13.1 - 20.3 t/ha, which is 3.4 – 7.2 t/ha more than in the option without fertilizer. |
format |
article |
author |
Vasyl Ivanovych Lopushniak Halyna Myhaylovna Hrytsuliak Anatoliy Viktorovych Bykin Nadia Petryvna Bordyuzha Larysa Oleksandryvna Semenko Myroslava Stepanivna Polutrenko Yulia Zinoviyivna Kotsyubynska |
author_facet |
Vasyl Ivanovych Lopushniak Halyna Myhaylovna Hrytsuliak Anatoliy Viktorovych Bykin Nadia Petryvna Bordyuzha Larysa Oleksandryvna Semenko Myroslava Stepanivna Polutrenko Yulia Zinoviyivna Kotsyubynska |
author_sort |
Vasyl Ivanovych Lopushniak |
title |
Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks |
title_short |
Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks |
title_full |
Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks |
title_fullStr |
Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks |
title_full_unstemmed |
Prognostic Models of Panicum virgatum L. Using Artificial Neural Networks |
title_sort |
prognostic models of panicum virgatum l. using artificial neural networks |
publisher |
Polish Society of Ecological Engineering (PTIE) |
publishDate |
2021 |
url |
https://doaj.org/article/09a53f710fc643749422b8b4b8edcebb |
work_keys_str_mv |
AT vasylivanovychlopushniak prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks AT halynamyhaylovnahrytsuliak prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks AT anatoliyviktorovychbykin prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks AT nadiapetryvnabordyuzha prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks AT larysaoleksandryvnasemenko prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks AT myroslavastepanivnapolutrenko prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks AT yuliazinoviyivnakotsyubynska prognosticmodelsofpanicumvirgatumlusingartificialneuralnetworks |
_version_ |
1718445002467573760 |