A Hierarchical Feature Extraction Network for Fast Scene Segmentation
Semantic segmentation is one of the most active research topics in computer vision with the goal to assign dense semantic labels for all pixels in a given image. In this paper, we introduce HFEN (Hierarchical Feature Extraction Network), a lightweight network to reach a balance between inference spe...
Guardado en:
Autores principales: | Liu Miao, Yi Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/09c21491cc544f31a234f355c24dfedf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
por: Udit Sharma, et al.
Publicado: (2021) -
Synergistic Attention for Ship Instance Segmentation in SAR Images
por: Danpei Zhao, et al.
Publicado: (2021) -
LLFE: A Novel Learning Local Features Extraction for UAV Navigation Based on Infrared Aerial Image and Satellite Reference Image Matching
por: Xupei Zhang, et al.
Publicado: (2021) -
An Approach to Semantically Segmenting Building Components and Outdoor Scenes Based on Multichannel Aerial Imagery Datasets
por: Yu Hou, et al.
Publicado: (2021) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Bo Zhong, et al.
Publicado: (2021)