Strain-balanced type-II superlattices for efficient multi-junction solar cells

Abstract Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-band...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Gonzalo, A. D. Utrilla, D. F. Reyes, V. Braza, J. M. Llorens, D. Fuertes Marrón, B. Alén, T. Ben, D. González, A. Guzman, A. Hierro, J. M. Ulloa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/09f463f279f448e0ad1876b45c4ffb08
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:09f463f279f448e0ad1876b45c4ffb08
record_format dspace
spelling oai:doaj.org-article:09f463f279f448e0ad1876b45c4ffb082021-12-02T12:30:26ZStrain-balanced type-II superlattices for efficient multi-junction solar cells10.1038/s41598-017-04321-42045-2322https://doaj.org/article/09f463f279f448e0ad1876b45c4ffb082017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04321-4https://doaj.org/toc/2045-2322Abstract Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0–1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.A. GonzaloA. D. UtrillaD. F. ReyesV. BrazaJ. M. LlorensD. Fuertes MarrónB. AlénT. BenD. GonzálezA. GuzmanA. HierroJ. M. UlloaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
A. Gonzalo
A. D. Utrilla
D. F. Reyes
V. Braza
J. M. Llorens
D. Fuertes Marrón
B. Alén
T. Ben
D. González
A. Guzman
A. Hierro
J. M. Ulloa
Strain-balanced type-II superlattices for efficient multi-junction solar cells
description Abstract Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0–1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.
format article
author A. Gonzalo
A. D. Utrilla
D. F. Reyes
V. Braza
J. M. Llorens
D. Fuertes Marrón
B. Alén
T. Ben
D. González
A. Guzman
A. Hierro
J. M. Ulloa
author_facet A. Gonzalo
A. D. Utrilla
D. F. Reyes
V. Braza
J. M. Llorens
D. Fuertes Marrón
B. Alén
T. Ben
D. González
A. Guzman
A. Hierro
J. M. Ulloa
author_sort A. Gonzalo
title Strain-balanced type-II superlattices for efficient multi-junction solar cells
title_short Strain-balanced type-II superlattices for efficient multi-junction solar cells
title_full Strain-balanced type-II superlattices for efficient multi-junction solar cells
title_fullStr Strain-balanced type-II superlattices for efficient multi-junction solar cells
title_full_unstemmed Strain-balanced type-II superlattices for efficient multi-junction solar cells
title_sort strain-balanced type-ii superlattices for efficient multi-junction solar cells
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/09f463f279f448e0ad1876b45c4ffb08
work_keys_str_mv AT agonzalo strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT adutrilla strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT dfreyes strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT vbraza strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT jmllorens strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT dfuertesmarron strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT balen strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT tben strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT dgonzalez strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT aguzman strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT ahierro strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
AT jmulloa strainbalancedtypeiisuperlatticesforefficientmultijunctionsolarcells
_version_ 1718394377831710720