Ecological Network Inference From Long-Term Presence-Absence Data
Abstract Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly i...
Guardado en:
Autores principales: | Elizabeth L. Sander, J. Timothy Wootton, Stefano Allesina |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a1c1fafb39a47679b06e032395d6927 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modularity and stability in ecological communities
por: Jacopo Grilli, et al.
Publicado: (2016) -
Long‐term Pseudogymnoascus destructans surveillance data reveal factors contributing to pathogen presence
por: John F. Grider, et al.
Publicado: (2021) -
Inferring broken detailed balance in the absence of observable currents
por: Ignacio A. Martínez, et al.
Publicado: (2019) -
BEEM-Static: Accurate inference of ecological interactions from cross-sectional microbiome data.
por: Chenhao Li, et al.
Publicado: (2021) -
Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network
por: Tamara K. Harms, et al.
Publicado: (2021)