VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation
Abstract Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) and mounting antibiotic resistance requires innovative treatment strategies. S. aureus uses secreted cyclic autoinducing peptides (AIPs) and the accessory gene regulator (agr) operon to coordinate expressi...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a232fa239de454899538bbde3d06141 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0a232fa239de454899538bbde3d06141 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0a232fa239de454899538bbde3d061412021-12-02T11:52:28ZVLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation10.1038/s41598-017-00753-02045-2322https://doaj.org/article/0a232fa239de454899538bbde3d061412017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00753-0https://doaj.org/toc/2045-2322Abstract Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) and mounting antibiotic resistance requires innovative treatment strategies. S. aureus uses secreted cyclic autoinducing peptides (AIPs) and the accessory gene regulator (agr) operon to coordinate expression of virulence factors required for invasive infection. Of the four agr alleles (agr types I-IV and corresponding AIPs1-4), agr type I isolates are most frequently associated with invasive infection. Cyclization via a thiolactone bond is essential for AIP function; therefore, recognition of the cyclic form of AIP1 may be necessary for antibody-mediated neutralization. However, the small sizes of AIPs and labile thiolactone bond have hindered vaccine development. To overcome this, we used a virus-like particle (VLP) vaccine platform (PP7) for conformationally-restricted presentation of a modified AIP1 amino acid sequence (AIP1S). Vaccination with PP7-AIP1S elicited AIP1-specific antibodies and limited agr-activation in vivo. Importantly, in a murine SSTI challenge model with a highly virulent agr type I S. aureus isolate, PP7-AIP1S vaccination reduced pathogenesis and increased bacterial clearance compared to controls, demonstrating vaccine efficacy. Given the contribution of MRSA agr type I isolates to human disease, vaccine targeting of AIP1-regulated virulence could have a major clinical impact in the fight against antibiotic resistance.Seth M. DalyJason A. JoynerKathleen D. TriplettBradley O. ElmoreSrijana PokhrelKathryn M. FrietzeDavid S. PeabodyBryce ChackerianPamela R. HallNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Seth M. Daly Jason A. Joyner Kathleen D. Triplett Bradley O. Elmore Srijana Pokhrel Kathryn M. Frietze David S. Peabody Bryce Chackerian Pamela R. Hall VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation |
description |
Abstract Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) and mounting antibiotic resistance requires innovative treatment strategies. S. aureus uses secreted cyclic autoinducing peptides (AIPs) and the accessory gene regulator (agr) operon to coordinate expression of virulence factors required for invasive infection. Of the four agr alleles (agr types I-IV and corresponding AIPs1-4), agr type I isolates are most frequently associated with invasive infection. Cyclization via a thiolactone bond is essential for AIP function; therefore, recognition of the cyclic form of AIP1 may be necessary for antibody-mediated neutralization. However, the small sizes of AIPs and labile thiolactone bond have hindered vaccine development. To overcome this, we used a virus-like particle (VLP) vaccine platform (PP7) for conformationally-restricted presentation of a modified AIP1 amino acid sequence (AIP1S). Vaccination with PP7-AIP1S elicited AIP1-specific antibodies and limited agr-activation in vivo. Importantly, in a murine SSTI challenge model with a highly virulent agr type I S. aureus isolate, PP7-AIP1S vaccination reduced pathogenesis and increased bacterial clearance compared to controls, demonstrating vaccine efficacy. Given the contribution of MRSA agr type I isolates to human disease, vaccine targeting of AIP1-regulated virulence could have a major clinical impact in the fight against antibiotic resistance. |
format |
article |
author |
Seth M. Daly Jason A. Joyner Kathleen D. Triplett Bradley O. Elmore Srijana Pokhrel Kathryn M. Frietze David S. Peabody Bryce Chackerian Pamela R. Hall |
author_facet |
Seth M. Daly Jason A. Joyner Kathleen D. Triplett Bradley O. Elmore Srijana Pokhrel Kathryn M. Frietze David S. Peabody Bryce Chackerian Pamela R. Hall |
author_sort |
Seth M. Daly |
title |
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation |
title_short |
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation |
title_full |
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation |
title_fullStr |
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation |
title_full_unstemmed |
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation |
title_sort |
vlp-based vaccine induces immune control of staphylococcus aureus virulence regulation |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/0a232fa239de454899538bbde3d06141 |
work_keys_str_mv |
AT sethmdaly vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation AT jasonajoyner vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation AT kathleendtriplett vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation AT bradleyoelmore vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation AT srijanapokhrel vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation AT kathrynmfrietze vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation AT davidspeabody vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation AT brycechackerian vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation AT pamelarhall vlpbasedvaccineinducesimmunecontrolofstaphylococcusaureusvirulenceregulation |
_version_ |
1718395028741554176 |