Deep convolution stack for waveform in underwater acoustic target recognition
Abstract In underwater acoustic target recognition, deep learning methods have been proved to be effective on recognizing original signal waveform. Previous methods often utilize large convolutional kernels to extract features at the beginning of neural networks. It leads to a lack of depth and stru...
Guardado en:
Autores principales: | Shengzhao Tian, Duanbing Chen, Hang Wang, Jingfa Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a2e8f2785584d68a2ccc8d0c380e1cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Experimental Results of Underwater Acoustic Communication with Nonlinear Frequency Modulation Waveform
por: Jeongha An, et al.
Publicado: (2021) -
An Underwater Acoustic Target Recognition Method Based on Spectrograms with Different Resolutions
por: Xinwei Luo, et al.
Publicado: (2021) -
Deep Learning-Based Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communication
por: Yufei Liu, et al.
Publicado: (2021) -
Design and demonstration of an underwater acoustic carpet cloak
por: Yafeng Bi, et al.
Publicado: (2017) -
Deep Convolutional Neural Networks for Tea Tree Pest Recognition and Diagnosis
por: Jing Chen, et al.
Publicado: (2021)