Gut microbiota of liver transplantation recipients

Abstract The characteristics of intestinal microbial communities may be affected by changes in the pathophysiology of patients with end-stage liver disease. Here, we focused on the characteristics of intestinal fecal microbial communities in post-liver transplantation (LT) patients in comparison wit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Li-Ying Sun, Yun-Sheng Yang, Wei Qu, Zhi-Jun Zhu, Lin Wei, Zhi-Sheng Ye, Jian-Rui Zhang, Xiao-Ye Sun, Zhi-Gui Zeng
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0a2eaebf74a94feeac9b4803ecd1f1eb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The characteristics of intestinal microbial communities may be affected by changes in the pathophysiology of patients with end-stage liver disease. Here, we focused on the characteristics of intestinal fecal microbial communities in post-liver transplantation (LT) patients in comparison with those in the same individuals pre-LT and in healthy individuals. The fecal microbial communities were analyzed via MiSeq-PE250 sequencing of the V4 region of 16S ribosomal RNA and were then compared between groups. We found that the gut microbiota of patients with severe liver disease who were awaiting LT was significantly different from that of healthy controls, as represented by the first principal component (p = 0.0066). Additionally, the second principal component represented a significant difference in the gut microbiota of patients between pre-LT and post-LT surgery (p = 0.03125). After LT, there was a significant decrease in the abundance of certain microbial species, such as Actinobacillus, Escherichia, and Shigella, and a significant increase in the abundance of other microbial species, such as Micromonosporaceae, Desulfobacterales, the Sarcina genus of Eubacteriaceae, and Akkermansia. Based on KEGG profiles, 15 functional modules were enriched and 21 functional modules were less represented in the post-LT samples compared with the pre-LT samples. Our study demonstrates that fecal microbial communities were significantly altered by LT.