Employing a Monte Carlo algorithm in Newton-type methods for restricted maximum likelihood estimation of genetic parameters.
Estimation of variance components by Monte Carlo (MC) expectation maximization (EM) restricted maximum likelihood (REML) is computationally efficient for large data sets and complex linear mixed effects models. However, efficiency may be lost due to the need for a large number of iterations of the E...
Guardado en:
Autores principales: | Kaarina Matilainen, Esa A Mäntysaari, Martin H Lidauer, Ismo Strandén, Robin Thompson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a35311431c4489c8c1ec8fd9d18e80c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semiparametric maximum likelihood probability density estimation.
por: Frank Kwasniok
Publicado: (2021) -
Quantum circuit cutting with maximum-likelihood tomography
por: Michael A. Perlin, et al.
Publicado: (2021) -
Semiparametric maximum likelihood probability density estimation
por: Frank Kwasniok
Publicado: (2021) -
An investigation of irreproducibility in maximum likelihood phylogenetic inference
por: Xing-Xing Shen, et al.
Publicado: (2020) -
Monte Carlo Algorithms for the Extracting of Electrical Capacitance
por: Andrei Kuznetsov, et al.
Publicado: (2021)