Robust Image Stitching and Reconstruction of Rolling Stocks Using a Novel Kalman Filter With a Multiple-Hypothesis Measurement Model
This work introduces a novel algorithm for the reconstruction of rolling stocks from a sequence of images. The research aims at producing an accurate and wide image model that can be used as a Digital Twin (DT) for diagnosis, fault prediction, maintenance, and other monitoring operations. When obser...
Guardado en:
Autores principales: | Carlo Alberto Avizzano, Gabriele Scivoletto, Paolo Tripicchio |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a3558d80d294bc99b87caf5b776fd22 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimization of Stock Portfolios Using Goal Programming Based on the Kalman-Filter Method
por: Fauziyah, et al.
Publicado: (2021) -
A New Linear Regression Kalman Filter with Symmetric Samples
por: Xiuqiong Chen, et al.
Publicado: (2021) -
An Integrated Deep Ensemble-Unscented Kalman Filter for Sideslip Angle Estimation With Sensor Filtering Network
por: Dongchan Kim, et al.
Publicado: (2021) -
Efficient Online Tracking-by-Detection With Kalman Filter
por: Siyuan Chen, et al.
Publicado: (2021) -
DEVELOPMENT TRENDS FOR ROLLING STOCK TRACTION MOTORS
por: O.V. Pasko, et al.
Publicado: (2013)