A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gz=z+∑j=2∞ djzj in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of Fekete-Szegö for functions in this family. We also discuss few int...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a5d77a4fd384a09bd8f62cffee63593 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0a5d77a4fd384a09bd8f62cffee63593 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0a5d77a4fd384a09bd8f62cffee635932021-11-08T02:36:24ZA Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers2314-888810.1155/2021/4249509https://doaj.org/article/0a5d77a4fd384a09bd8f62cffee635932021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/4249509https://doaj.org/toc/2314-8888By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gz=z+∑j=2∞ djzj in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of Fekete-Szegö for functions in this family. We also discuss few interesting observations and provide relevant connections of the result investigated.Basem Aref FrasinSondekola Rudra SwamyIbtisam AldawishHindawi LimitedarticleMathematicsQA1-939ENJournal of Function Spaces, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mathematics QA1-939 |
spellingShingle |
Mathematics QA1-939 Basem Aref Frasin Sondekola Rudra Swamy Ibtisam Aldawish A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers |
description |
By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gz=z+∑j=2∞ djzj in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of Fekete-Szegö for functions in this family. We also discuss few interesting observations and provide relevant connections of the result investigated. |
format |
article |
author |
Basem Aref Frasin Sondekola Rudra Swamy Ibtisam Aldawish |
author_facet |
Basem Aref Frasin Sondekola Rudra Swamy Ibtisam Aldawish |
author_sort |
Basem Aref Frasin |
title |
A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers |
title_short |
A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers |
title_full |
A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers |
title_fullStr |
A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers |
title_full_unstemmed |
A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers |
title_sort |
comprehensive family of biunivalent functions defined by k-fibonacci numbers |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/0a5d77a4fd384a09bd8f62cffee63593 |
work_keys_str_mv |
AT basemareffrasin acomprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers AT sondekolarudraswamy acomprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers AT ibtisamaldawish acomprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers AT basemareffrasin comprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers AT sondekolarudraswamy comprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers AT ibtisamaldawish comprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers |
_version_ |
1718443066145112064 |