A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers

By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gz=z+∑j=2∞ djzj in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of Fekete-Szegö for functions in this family. We also discuss few int...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Basem Aref Frasin, Sondekola Rudra Swamy, Ibtisam Aldawish
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/0a5d77a4fd384a09bd8f62cffee63593
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0a5d77a4fd384a09bd8f62cffee63593
record_format dspace
spelling oai:doaj.org-article:0a5d77a4fd384a09bd8f62cffee635932021-11-08T02:36:24ZA Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers2314-888810.1155/2021/4249509https://doaj.org/article/0a5d77a4fd384a09bd8f62cffee635932021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/4249509https://doaj.org/toc/2314-8888By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gz=z+∑j=2∞ djzj in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of Fekete-Szegö for functions in this family. We also discuss few interesting observations and provide relevant connections of the result investigated.Basem Aref FrasinSondekola Rudra SwamyIbtisam AldawishHindawi LimitedarticleMathematicsQA1-939ENJournal of Function Spaces, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Basem Aref Frasin
Sondekola Rudra Swamy
Ibtisam Aldawish
A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
description By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gz=z+∑j=2∞ djzj in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of Fekete-Szegö for functions in this family. We also discuss few interesting observations and provide relevant connections of the result investigated.
format article
author Basem Aref Frasin
Sondekola Rudra Swamy
Ibtisam Aldawish
author_facet Basem Aref Frasin
Sondekola Rudra Swamy
Ibtisam Aldawish
author_sort Basem Aref Frasin
title A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
title_short A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
title_full A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
title_fullStr A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
title_full_unstemmed A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
title_sort comprehensive family of biunivalent functions defined by k-fibonacci numbers
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/0a5d77a4fd384a09bd8f62cffee63593
work_keys_str_mv AT basemareffrasin acomprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers
AT sondekolarudraswamy acomprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers
AT ibtisamaldawish acomprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers
AT basemareffrasin comprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers
AT sondekolarudraswamy comprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers
AT ibtisamaldawish comprehensivefamilyofbiunivalentfunctionsdefinedbykfibonaccinumbers
_version_ 1718443066145112064