A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gz=z+∑j=2∞ djzj in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of Fekete-Szegö for functions in this family. We also discuss few int...
Enregistré dans:
Auteurs principaux: | Basem Aref Frasin, Sondekola Rudra Swamy, Ibtisam Aldawish |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0a5d77a4fd384a09bd8f62cffee63593 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A New Method of Matrix Decomposition to Get the Determinants and Inverses of r-Circulant Matrices with Fibonacci and Lucas Numbers
par: Jiangming Ma, et autres
Publié: (2021) -
Distance Fibonacci Polynomials by Graph Methods
par: Dominik Strzałka, et autres
Publié: (2021) -
New Oscillation Results of Even-Order Emden–Fowler Neutral Differential Equations
par: Saeed Althubiti, et autres
Publié: (2021) -
On the Number of Conjugate Classes of Derangements
par: Wen-Wei Li, et autres
Publié: (2021) -
Comprehensive Evaluation Model of Environmental Quality in Ecological Reserve
par: Songjia Zhang, et autres
Publié: (2021)