Prioritizing key resilience indicators to support coral reef management in a changing climate.
Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a6dd75d8d9a4ab78058ddd37a28594a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0a6dd75d8d9a4ab78058ddd37a28594a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0a6dd75d8d9a4ab78058ddd37a28594a2021-11-18T07:07:15ZPrioritizing key resilience indicators to support coral reef management in a changing climate.1932-620310.1371/journal.pone.0042884https://doaj.org/article/0a6dd75d8d9a4ab78058ddd37a28594a2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22952618/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority reefs. We asked experts and reviewed the scientific literature for guidance on the multiple physical and biological factors that affect the ability of coral reefs to resist and recover from climate disturbance. Eleven key factors to inform decisions based on scaling scientific evidence and the achievability of quantifying the factors were identified. Factors important to resistance and recovery, which are important components of resilience, were not strongly related, and should be assessed independently. The abundance of resistant (heat-tolerant) coral species and past temperature variability were perceived to provide the greatest resistance to climate change, while coral recruitment rates, and macroalgae abundance were most influential in the recovery process. Based on the 11 key factors, we tested an evidence-based framework for climate change resilience in an Indonesian marine protected area. The results suggest our evidence-weighted framework improved upon existing un-weighted methods in terms of characterizing resilience and distinguishing priority sites. The evaluation supports the concept that, despite high ecological complexity, relatively few strong variables can be important in influencing ecosystem dynamics. This is the first rigorous assessment of factors promoting coral reef resilience based on their perceived importance, empirical evidence, and feasibility of measurement. There were few differences between scientists' perceptions of factor importance and the scientific evidence found in journal publications but more before and after impact studies will be required to fully test the validity of all the factors. The methods here will increase the feasibility and defensibility of including key resilience metrics in evaluations of coral reefs, as well as reduce costs. Adaptation, marine protected areas, priority setting, resistance, recovery.Tim R McClanahanSimon D DonnerJeffrey A MaynardM Aaron MacNeilNicholas A J GrahamJoseph MainaAndrew C BakerJahson B Alemu IMaria BegerStuart J CampbellEmily S DarlingC Mark EakinScott F HeronStacy D JupiterCarolyn J LundquistElizabeth McLeodPeter J MumbyMichelle J PaddackElizabeth R SeligRobert van WoesikPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 8, p e42884 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tim R McClanahan Simon D Donner Jeffrey A Maynard M Aaron MacNeil Nicholas A J Graham Joseph Maina Andrew C Baker Jahson B Alemu I Maria Beger Stuart J Campbell Emily S Darling C Mark Eakin Scott F Heron Stacy D Jupiter Carolyn J Lundquist Elizabeth McLeod Peter J Mumby Michelle J Paddack Elizabeth R Selig Robert van Woesik Prioritizing key resilience indicators to support coral reef management in a changing climate. |
description |
Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority reefs. We asked experts and reviewed the scientific literature for guidance on the multiple physical and biological factors that affect the ability of coral reefs to resist and recover from climate disturbance. Eleven key factors to inform decisions based on scaling scientific evidence and the achievability of quantifying the factors were identified. Factors important to resistance and recovery, which are important components of resilience, were not strongly related, and should be assessed independently. The abundance of resistant (heat-tolerant) coral species and past temperature variability were perceived to provide the greatest resistance to climate change, while coral recruitment rates, and macroalgae abundance were most influential in the recovery process. Based on the 11 key factors, we tested an evidence-based framework for climate change resilience in an Indonesian marine protected area. The results suggest our evidence-weighted framework improved upon existing un-weighted methods in terms of characterizing resilience and distinguishing priority sites. The evaluation supports the concept that, despite high ecological complexity, relatively few strong variables can be important in influencing ecosystem dynamics. This is the first rigorous assessment of factors promoting coral reef resilience based on their perceived importance, empirical evidence, and feasibility of measurement. There were few differences between scientists' perceptions of factor importance and the scientific evidence found in journal publications but more before and after impact studies will be required to fully test the validity of all the factors. The methods here will increase the feasibility and defensibility of including key resilience metrics in evaluations of coral reefs, as well as reduce costs. Adaptation, marine protected areas, priority setting, resistance, recovery. |
format |
article |
author |
Tim R McClanahan Simon D Donner Jeffrey A Maynard M Aaron MacNeil Nicholas A J Graham Joseph Maina Andrew C Baker Jahson B Alemu I Maria Beger Stuart J Campbell Emily S Darling C Mark Eakin Scott F Heron Stacy D Jupiter Carolyn J Lundquist Elizabeth McLeod Peter J Mumby Michelle J Paddack Elizabeth R Selig Robert van Woesik |
author_facet |
Tim R McClanahan Simon D Donner Jeffrey A Maynard M Aaron MacNeil Nicholas A J Graham Joseph Maina Andrew C Baker Jahson B Alemu I Maria Beger Stuart J Campbell Emily S Darling C Mark Eakin Scott F Heron Stacy D Jupiter Carolyn J Lundquist Elizabeth McLeod Peter J Mumby Michelle J Paddack Elizabeth R Selig Robert van Woesik |
author_sort |
Tim R McClanahan |
title |
Prioritizing key resilience indicators to support coral reef management in a changing climate. |
title_short |
Prioritizing key resilience indicators to support coral reef management in a changing climate. |
title_full |
Prioritizing key resilience indicators to support coral reef management in a changing climate. |
title_fullStr |
Prioritizing key resilience indicators to support coral reef management in a changing climate. |
title_full_unstemmed |
Prioritizing key resilience indicators to support coral reef management in a changing climate. |
title_sort |
prioritizing key resilience indicators to support coral reef management in a changing climate. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/0a6dd75d8d9a4ab78058ddd37a28594a |
work_keys_str_mv |
AT timrmcclanahan prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT simonddonner prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT jeffreyamaynard prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT maaronmacneil prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT nicholasajgraham prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT josephmaina prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT andrewcbaker prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT jahsonbalemui prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT mariabeger prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT stuartjcampbell prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT emilysdarling prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT cmarkeakin prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT scottfheron prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT stacydjupiter prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT carolynjlundquist prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT elizabethmcleod prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT peterjmumby prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT michellejpaddack prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT elizabethrselig prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate AT robertvanwoesik prioritizingkeyresilienceindicatorstosupportcoralreefmanagementinachangingclimate |
_version_ |
1718423895587946496 |