Conditional Invertible Neural Networks for Medical Imaging
Over recent years, deep learning methods have become an increasingly popular choice for solving tasks from the field of inverse problems. Many of these new data-driven methods have produced impressive results, although most only give point estimates for the reconstruction. However, especially in the...
Guardado en:
Autores principales: | Alexander Denker, Maximilian Schmidt, Johannes Leuschner, Peter Maass |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a745086f3d24cb58d64562b47d9acde |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Image and Video Forensics
por: Irene Amerini, et al.
Publicado: (2021) -
Advanced Computational Methods for Oncological Image Analysis
por: Leonardo Rundo, et al.
Publicado: (2021) -
An Optimization-Based Meta-Learning Model for MRI Reconstruction with Diverse Dataset
por: Wanyu Bian, et al.
Publicado: (2021) -
Ultrasound Imaging in Dentistry: A Literature Overview
por: Rodolfo Reda, et al.
Publicado: (2021) -
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
por: Marica Pesce, et al.
Publicado: (2021)