A Comparative Numerical Study and Stability Analysis for a Fractional-Order SIR Model of Childhood Diseases
The objective of this work is to examine the dynamics of a fractional-order susceptible-infectious-recovered (SIR) model that simulate epidemiological diseases such as childhood diseases. An effective numerical scheme based on Grünwald–Letnikov fractional derivative is suggested to solve the conside...
Guardado en:
Autores principales: | Mohamed M. Mousa, Fahad Alsharari |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a77e173381940b0801a1cc772131d99 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A new formulation of finite difference and finite volume methods for solving a space fractional convection–diffusion model with fewer error estimates
por: Reem Edwan, et al.
Publicado: (2021) -
On the Initial Value Problems for Caputo-Type Generalized Proportional Vector-Order Fractional Differential Equations
por: Mohamed I. Abbas, et al.
Publicado: (2021) -
Formation of Characteristic Polynomials on the Basis of Fractional Powers j of Dynamic Systems and Stability Problems of Such Systems
por: Orest Lozynskyy, et al.
Publicado: (2021) -
Differential equations with tempered Ψ-Caputo fractional derivative
por: Milan Medveď, et al.
Publicado: (2021) -
Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
por: Mohamed A. Abdelkawy, et al.
Publicado: (2022)