Coupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates

Rapid and accurate identification of patients colonised with carbapenemase-producing organisms (CPOs) is essential to adopt prompt prevention measures to reduce the risk of transmission. Recent studies have demonstrated the ability to combine machine learning (ML) algorithms with real-time digital P...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luca Miglietta, Ahmad Moniri, Ivana Pennisi, Kenny Malpartida-Cardenas, Hala Abbas, Kerri Hill-Cawthorne, Frances Bolt, Elita Jauneikaite, Frances Davies, Alison Holmes, Pantelis Georgiou, Jesus Rodriguez-Manzano
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/0a7847a7d8ce458e8ac77c290dce8603
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0a7847a7d8ce458e8ac77c290dce8603
record_format dspace
spelling oai:doaj.org-article:0a7847a7d8ce458e8ac77c290dce86032021-11-30T12:41:03ZCoupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates2296-889X10.3389/fmolb.2021.775299https://doaj.org/article/0a7847a7d8ce458e8ac77c290dce86032021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmolb.2021.775299/fullhttps://doaj.org/toc/2296-889XRapid and accurate identification of patients colonised with carbapenemase-producing organisms (CPOs) is essential to adopt prompt prevention measures to reduce the risk of transmission. Recent studies have demonstrated the ability to combine machine learning (ML) algorithms with real-time digital PCR (dPCR) instruments to increase classification accuracy of multiplex PCR assays when using synthetic DNA templates. We sought to determine if this novel methodology could be applied to improve identification of the five major carbapenem-resistant genes in clinical CPO-isolates, which would represent a leap forward in the use of PCR-based data-driven diagnostics for clinical applications. We collected 253 clinical isolates (including 221 CPO-positive samples) and developed a novel 5-plex PCR assay for detection of blaIMP, blaKPC, blaNDM, blaOXA-48, and blaVIM. Combining the recently reported ML method “Amplification and Melting Curve Analysis” (AMCA) with the abovementioned multiplex assay, we assessed the performance of the AMCA methodology in detecting these genes. The improved classification accuracy of AMCA relies on the usage of real-time data from a single-fluorescent channel and benefits from the kinetic/thermodynamic information encoded in the thousands of amplification events produced by high throughput real-time dPCR. The 5-plex showed a lower limit of detection of 10 DNA copies per reaction for each primer set and no cross-reactivity with other carbapenemase genes. The AMCA classifier demonstrated excellent predictive performance with 99.6% (CI 97.8–99.9%) accuracy (only one misclassified sample out of the 253, with a total of 160,041 positive amplification events), which represents a 7.9% increase (p-value <0.05) compared to conventional melting curve analysis. This work demonstrates the use of the AMCA method to increase the throughput and performance of state-of-the-art molecular diagnostic platforms, without hardware modifications and additional costs, thus potentially providing substantial clinical utility on screening patients for CPO carriage.Luca MigliettaLuca MigliettaAhmad MoniriIvana PennisiKenny Malpartida-CardenasHala AbbasKerri Hill-CawthorneFrances BoltElita JauneikaiteElita JauneikaiteFrances DaviesFrances DaviesAlison HolmesAlison HolmesPantelis GeorgiouJesus Rodriguez-ManzanoFrontiers Media S.A.articledigital PCR (dPCR)infectious diseasemoleuclar diagnosticsdata driven (DD)real-time PCRBiology (General)QH301-705.5ENFrontiers in Molecular Biosciences, Vol 8 (2021)
institution DOAJ
collection DOAJ
language EN
topic digital PCR (dPCR)
infectious disease
moleuclar diagnostics
data driven (DD)
real-time PCR
Biology (General)
QH301-705.5
spellingShingle digital PCR (dPCR)
infectious disease
moleuclar diagnostics
data driven (DD)
real-time PCR
Biology (General)
QH301-705.5
Luca Miglietta
Luca Miglietta
Ahmad Moniri
Ivana Pennisi
Kenny Malpartida-Cardenas
Hala Abbas
Kerri Hill-Cawthorne
Frances Bolt
Elita Jauneikaite
Elita Jauneikaite
Frances Davies
Frances Davies
Alison Holmes
Alison Holmes
Pantelis Georgiou
Jesus Rodriguez-Manzano
Coupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates
description Rapid and accurate identification of patients colonised with carbapenemase-producing organisms (CPOs) is essential to adopt prompt prevention measures to reduce the risk of transmission. Recent studies have demonstrated the ability to combine machine learning (ML) algorithms with real-time digital PCR (dPCR) instruments to increase classification accuracy of multiplex PCR assays when using synthetic DNA templates. We sought to determine if this novel methodology could be applied to improve identification of the five major carbapenem-resistant genes in clinical CPO-isolates, which would represent a leap forward in the use of PCR-based data-driven diagnostics for clinical applications. We collected 253 clinical isolates (including 221 CPO-positive samples) and developed a novel 5-plex PCR assay for detection of blaIMP, blaKPC, blaNDM, blaOXA-48, and blaVIM. Combining the recently reported ML method “Amplification and Melting Curve Analysis” (AMCA) with the abovementioned multiplex assay, we assessed the performance of the AMCA methodology in detecting these genes. The improved classification accuracy of AMCA relies on the usage of real-time data from a single-fluorescent channel and benefits from the kinetic/thermodynamic information encoded in the thousands of amplification events produced by high throughput real-time dPCR. The 5-plex showed a lower limit of detection of 10 DNA copies per reaction for each primer set and no cross-reactivity with other carbapenemase genes. The AMCA classifier demonstrated excellent predictive performance with 99.6% (CI 97.8–99.9%) accuracy (only one misclassified sample out of the 253, with a total of 160,041 positive amplification events), which represents a 7.9% increase (p-value <0.05) compared to conventional melting curve analysis. This work demonstrates the use of the AMCA method to increase the throughput and performance of state-of-the-art molecular diagnostic platforms, without hardware modifications and additional costs, thus potentially providing substantial clinical utility on screening patients for CPO carriage.
format article
author Luca Miglietta
Luca Miglietta
Ahmad Moniri
Ivana Pennisi
Kenny Malpartida-Cardenas
Hala Abbas
Kerri Hill-Cawthorne
Frances Bolt
Elita Jauneikaite
Elita Jauneikaite
Frances Davies
Frances Davies
Alison Holmes
Alison Holmes
Pantelis Georgiou
Jesus Rodriguez-Manzano
author_facet Luca Miglietta
Luca Miglietta
Ahmad Moniri
Ivana Pennisi
Kenny Malpartida-Cardenas
Hala Abbas
Kerri Hill-Cawthorne
Frances Bolt
Elita Jauneikaite
Elita Jauneikaite
Frances Davies
Frances Davies
Alison Holmes
Alison Holmes
Pantelis Georgiou
Jesus Rodriguez-Manzano
author_sort Luca Miglietta
title Coupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates
title_short Coupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates
title_full Coupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates
title_fullStr Coupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates
title_full_unstemmed Coupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates
title_sort coupling machine learning and high throughput multiplex digital pcr enables accurate detection of carbapenem-resistant genes in clinical isolates
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/0a7847a7d8ce458e8ac77c290dce8603
work_keys_str_mv AT lucamiglietta couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT lucamiglietta couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT ahmadmoniri couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT ivanapennisi couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT kennymalpartidacardenas couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT halaabbas couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT kerrihillcawthorne couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT francesbolt couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT elitajauneikaite couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT elitajauneikaite couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT francesdavies couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT francesdavies couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT alisonholmes couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT alisonholmes couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT pantelisgeorgiou couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
AT jesusrodriguezmanzano couplingmachinelearningandhighthroughputmultiplexdigitalpcrenablesaccuratedetectionofcarbapenemresistantgenesinclinicalisolates
_version_ 1718406545628200960