YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide
ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a802e1209834c37b465cfe2a17115bf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0a802e1209834c37b465cfe2a17115bf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0a802e1209834c37b465cfe2a17115bf2021-11-15T15:57:03ZYejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide10.1128/mBio.00598-202150-7511https://doaj.org/article/0a802e1209834c37b465cfe2a17115bf2020-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00598-20https://doaj.org/toc/2150-7511ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport.Randi L. GuestDaniel Samé GuerraMaria WisslerJacqueline GrimmThomas J. SilhavyAmerican Society for MicrobiologyarticlelipopolysaccharideproteolysisLpxCFtsHYciMYejMMicrobiologyQR1-502ENmBio, Vol 11, Iss 2 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
lipopolysaccharide proteolysis LpxC FtsH YciM YejM Microbiology QR1-502 |
spellingShingle |
lipopolysaccharide proteolysis LpxC FtsH YciM YejM Microbiology QR1-502 Randi L. Guest Daniel Samé Guerra Maria Wissler Jacqueline Grimm Thomas J. Silhavy YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide |
description |
ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport. |
format |
article |
author |
Randi L. Guest Daniel Samé Guerra Maria Wissler Jacqueline Grimm Thomas J. Silhavy |
author_facet |
Randi L. Guest Daniel Samé Guerra Maria Wissler Jacqueline Grimm Thomas J. Silhavy |
author_sort |
Randi L. Guest |
title |
YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide |
title_short |
YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide |
title_full |
YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide |
title_fullStr |
YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide |
title_full_unstemmed |
YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide |
title_sort |
yejm modulates activity of the ycim/ftsh protease complex to prevent lethal accumulation of lipopolysaccharide |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/0a802e1209834c37b465cfe2a17115bf |
work_keys_str_mv |
AT randilguest yejmmodulatesactivityoftheycimftshproteasecomplextopreventlethalaccumulationoflipopolysaccharide AT danielsameguerra yejmmodulatesactivityoftheycimftshproteasecomplextopreventlethalaccumulationoflipopolysaccharide AT mariawissler yejmmodulatesactivityoftheycimftshproteasecomplextopreventlethalaccumulationoflipopolysaccharide AT jacquelinegrimm yejmmodulatesactivityoftheycimftshproteasecomplextopreventlethalaccumulationoflipopolysaccharide AT thomasjsilhavy yejmmodulatesactivityoftheycimftshproteasecomplextopreventlethalaccumulationoflipopolysaccharide |
_version_ |
1718427010596864000 |