Salient Object Detection Using Recurrent Guidance Network With Hierarchical Attention Features
Fully convolutional networks (FCNs) play an significant role in salient object detection tasks, due to the capability of extracting abundant multi-level and multi-scale features. However, most of FCN-based models utilize multi-level features in a single indiscriminative manner, which is difficult to...
Guardado en:
Autores principales: | Shanmei Lu, Qiang Guo, Yongxia Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a89e388997c497fb40fe4beb2459347 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
por: Jiajia Wu, et al.
Publicado: (2021) -
Edge-Aware Multi-Level Interactive Network for Salient Object Detection of Strip Steel Surface Defects
por: Xiaofei Zhou, et al.
Publicado: (2021) -
Cascaded Segmented Matting Network for Human Matting
por: Bo Liu, et al.
Publicado: (2021) -
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
por: Minghua Zhang, et al.
Publicado: (2021) -
POAT-Net: Parallel Offset-Attention Assisted Transformer for 3D Object Detection for Autonomous Driving
por: Jinyang Wang, et al.
Publicado: (2021)