A real-world demonstration of machine learning generalizability in the detection of intracranial hemorrhage on head computerized tomography
Abstract Machine learning (ML) holds great promise in transforming healthcare. While published studies have shown the utility of ML models in interpreting medical imaging examinations, these are often evaluated under laboratory settings. The importance of real world evaluation is best illustrated by...
Guardado en:
Autores principales: | Hojjat Salehinejad, Jumpei Kitamura, Noah Ditkofsky, Amy Lin, Aditya Bharatha, Suradech Suthiphosuwan, Hui-Ming Lin, Jefferson R. Wilson, Muhammad Mamdani, Errol Colak |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a90015727c949899ea11517db07fa81 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Intracranial hemorrhage mimicking alcohol intoxication
por: Arka Adhvaryu, et al.
Publicado: (2021) -
Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification
por: Sundar Santhoshkumar, et al.
Publicado: (2021) -
A new surgical method of treatment spontaneous intracranial hemorrhage
por: Du Ning, et al.
Publicado: (2021) -
Recombinant activated factor VII in a patient with intracranial hemorrhage and severe thrombocytopenia
por: Amir M. Ansari, et al.
Publicado: (2021) -
Risk Factors and a Nomogram for Predicting Intracranial Hemorrhage in Stroke Patients Undergoing Thrombolysis
por: Zhou Z, et al.
Publicado: (2020)