Using molecular dynamics simulations to prioritize and understand AI-generated cell penetrating peptides
Abstract Cell-penetrating peptides have important therapeutic applications in drug delivery, but the variety of known cell-penetrating peptides is still limited. With a promise to accelerate peptide development, artificial intelligence (AI) techniques including deep generative models are currently i...
Enregistré dans:
Auteurs principaux: | Duy Phuoc Tran, Seiichi Tada, Akiko Yumoto, Akio Kitao, Yoshihiro Ito, Takanori Uzawa, Koji Tsuda |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0a9cf7df2c9b4a0ea4bd512001748a5c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology
par: Hyang-Mi Lee, et autres
Publié: (2021) -
Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature
par: Kazutami Sakamoto, et autres
Publié: (2021) -
Photodynamic therapy by conjugation of cell-penetrating peptide with fluorochrome
par: Park CK, et autres
Publié: (2017) -
Synthetic molecular evolution of hybrid cell penetrating peptides
par: W. Berkeley Kauffman, et autres
Publié: (2018) -
Diagnostic peptide discovery: prioritization of pathogen diagnostic markers using multiple features.
par: Santiago J Carmona, et autres
Publié: (2012)