Using molecular dynamics simulations to prioritize and understand AI-generated cell penetrating peptides
Abstract Cell-penetrating peptides have important therapeutic applications in drug delivery, but the variety of known cell-penetrating peptides is still limited. With a promise to accelerate peptide development, artificial intelligence (AI) techniques including deep generative models are currently i...
Guardado en:
Autores principales: | Duy Phuoc Tran, Seiichi Tada, Akiko Yumoto, Akio Kitao, Yoshihiro Ito, Takanori Uzawa, Koji Tsuda |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a9cf7df2c9b4a0ea4bd512001748a5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology
por: Hyang-Mi Lee, et al.
Publicado: (2021) -
Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature
por: Kazutami Sakamoto, et al.
Publicado: (2021) -
Photodynamic therapy by conjugation of cell-penetrating peptide with fluorochrome
por: Park CK, et al.
Publicado: (2017) -
Synthetic molecular evolution of hybrid cell penetrating peptides
por: W. Berkeley Kauffman, et al.
Publicado: (2018) -
Diagnostic peptide discovery: prioritization of pathogen diagnostic markers using multiple features.
por: Santiago J Carmona, et al.
Publicado: (2012)