Personalized Sleep Parameters Estimation from Actigraphy: A Machine Learning Approach
Aria Khademi,1–3 Yasser EL-Manzalawy,1,4 Lindsay Master,5 Orfeu M Buxton,5–9 Vasant G Honavar1–3,6,10,11 1College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA; 2Artificial Intelligence Research Laboratory, The Penns...
Guardado en:
Autores principales: | Khademi A, EL-Manzalawy Y, Master L, Buxton OM, Honavar VG |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0a9fdc6c6b5e473db580ad3dc6c74aaf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Actigraphy-based sleep estimation in adolescents and adults: a comparison with polysomnography using two scoring algorithms
por: Quante M, et al.
Publicado: (2018) -
The Development and Accuracy of the THIM Wearable Device for Estimating Sleep and Wakefulness
por: Scott H, et al.
Publicado: (2021) -
Multi-Night Validation of a Sleep Tracking Ring in Adolescents Compared with a Research Actigraph and Polysomnography
por: Chee NIYN, et al.
Publicado: (2021) -
The Impact of Cognitive Behavioral Therapy for Insomnia on Sleep Log and Actigraphy Outcomes in People with Multiple Sclerosis: A Secondary Analysis
por: Williams-Cooke C, et al.
Publicado: (2021) -
Finger Twitches are More Frequent in REM Sleep Than in Non-REM Sleep
por: Reiter AM, et al.
Publicado: (2020)