Thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila

Abstract Insects are ectothermal animals that are constrained in their survival and reproduction by external temperature fluctuations which require either active avoidance of or movement towards a given heat source. In Drosophila, different thermoreceptors and neurons have been identified that media...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Edgar Buhl, Benjamin Kottler, James J. L. Hodge, Frank Hirth
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0aaea794aeb948d5b26e08e59be028b0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0aaea794aeb948d5b26e08e59be028b0
record_format dspace
spelling oai:doaj.org-article:0aaea794aeb948d5b26e08e59be028b02021-12-02T15:13:06ZThermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila10.1038/s41598-020-80103-92045-2322https://doaj.org/article/0aaea794aeb948d5b26e08e59be028b02021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80103-9https://doaj.org/toc/2045-2322Abstract Insects are ectothermal animals that are constrained in their survival and reproduction by external temperature fluctuations which require either active avoidance of or movement towards a given heat source. In Drosophila, different thermoreceptors and neurons have been identified that mediate temperature sensation to maintain the animal’s thermal preference. However, less is known how thermosensory information is integrated to gate thermoresponsive motor behavior. Here we use transsynaptic tracing together with calcium imaging, electrophysiology and thermogenetic manipulations in freely moving Drosophila exposed to elevated temperature and identify different functions of ellipsoid body ring neurons, R1-R4, in thermoresponsive motor behavior. Our results show that warming of the external surroundings elicits calcium influx specifically in R2-R4 but not in R1, which evokes threshold-dependent neural activity in the outer layer ring neurons. In contrast to R2, R3 and R4d neurons, thermogenetic inactivation of R4m and R1 neurons expressing the temperature-sensitive mutant allele of dynamin, shibire TS , results in impaired thermoresponsive motor behavior at elevated 31 °C. trans-Tango mediated transsynaptic tracing together with physiological and behavioral analyses indicate that integrated sensory information of warming is registered by neural activity of R4m as input layer of the ellipsoid body ring neuropil and relayed on to R1 output neurons that gate an adaptive motor response. Together these findings imply that segregated activities of central complex ring neurons mediate sensory-motor transformation of external temperature changes and gate thermoresponsive motor behavior in Drosophila.Edgar BuhlBenjamin KottlerJames J. L. HodgeFrank HirthNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-17 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Edgar Buhl
Benjamin Kottler
James J. L. Hodge
Frank Hirth
Thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila
description Abstract Insects are ectothermal animals that are constrained in their survival and reproduction by external temperature fluctuations which require either active avoidance of or movement towards a given heat source. In Drosophila, different thermoreceptors and neurons have been identified that mediate temperature sensation to maintain the animal’s thermal preference. However, less is known how thermosensory information is integrated to gate thermoresponsive motor behavior. Here we use transsynaptic tracing together with calcium imaging, electrophysiology and thermogenetic manipulations in freely moving Drosophila exposed to elevated temperature and identify different functions of ellipsoid body ring neurons, R1-R4, in thermoresponsive motor behavior. Our results show that warming of the external surroundings elicits calcium influx specifically in R2-R4 but not in R1, which evokes threshold-dependent neural activity in the outer layer ring neurons. In contrast to R2, R3 and R4d neurons, thermogenetic inactivation of R4m and R1 neurons expressing the temperature-sensitive mutant allele of dynamin, shibire TS , results in impaired thermoresponsive motor behavior at elevated 31 °C. trans-Tango mediated transsynaptic tracing together with physiological and behavioral analyses indicate that integrated sensory information of warming is registered by neural activity of R4m as input layer of the ellipsoid body ring neuropil and relayed on to R1 output neurons that gate an adaptive motor response. Together these findings imply that segregated activities of central complex ring neurons mediate sensory-motor transformation of external temperature changes and gate thermoresponsive motor behavior in Drosophila.
format article
author Edgar Buhl
Benjamin Kottler
James J. L. Hodge
Frank Hirth
author_facet Edgar Buhl
Benjamin Kottler
James J. L. Hodge
Frank Hirth
author_sort Edgar Buhl
title Thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila
title_short Thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila
title_full Thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila
title_fullStr Thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila
title_full_unstemmed Thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila
title_sort thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of drosophila
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0aaea794aeb948d5b26e08e59be028b0
work_keys_str_mv AT edgarbuhl thermoresponsivemotorbehaviorismediatedbyringneuroncircuitsinthecentralcomplexofdrosophila
AT benjaminkottler thermoresponsivemotorbehaviorismediatedbyringneuroncircuitsinthecentralcomplexofdrosophila
AT jamesjlhodge thermoresponsivemotorbehaviorismediatedbyringneuroncircuitsinthecentralcomplexofdrosophila
AT frankhirth thermoresponsivemotorbehaviorismediatedbyringneuroncircuitsinthecentralcomplexofdrosophila
_version_ 1718387551968952320