Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage.
The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity an...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ab6acb13183473b9f8a1f8e1dff3502 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0ab6acb13183473b9f8a1f8e1dff3502 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0ab6acb13183473b9f8a1f8e1dff35022021-11-18T07:43:32ZGating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage.1932-620310.1371/journal.pone.0064828https://doaj.org/article/0ab6acb13183473b9f8a1f8e1dff35022013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23741401/?tool=EBIhttps://doaj.org/toc/1932-6203The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.Francesca PrestoriClaudia BonardiLisa MapelliPaola LombardoRianne GoselinkMaria Egle De StefanoDaniela GandolfiJonathan MapelliDaniel BertrandMartijn SchonewilleChris De ZeeuwEgidio D'AngeloPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 5, p e64828 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Francesca Prestori Claudia Bonardi Lisa Mapelli Paola Lombardo Rianne Goselink Maria Egle De Stefano Daniela Gandolfi Jonathan Mapelli Daniel Bertrand Martijn Schonewille Chris De Zeeuw Egidio D'Angelo Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. |
description |
The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation. |
format |
article |
author |
Francesca Prestori Claudia Bonardi Lisa Mapelli Paola Lombardo Rianne Goselink Maria Egle De Stefano Daniela Gandolfi Jonathan Mapelli Daniel Bertrand Martijn Schonewille Chris De Zeeuw Egidio D'Angelo |
author_facet |
Francesca Prestori Claudia Bonardi Lisa Mapelli Paola Lombardo Rianne Goselink Maria Egle De Stefano Daniela Gandolfi Jonathan Mapelli Daniel Bertrand Martijn Schonewille Chris De Zeeuw Egidio D'Angelo |
author_sort |
Francesca Prestori |
title |
Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. |
title_short |
Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. |
title_full |
Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. |
title_fullStr |
Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. |
title_full_unstemmed |
Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. |
title_sort |
gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/0ab6acb13183473b9f8a1f8e1dff3502 |
work_keys_str_mv |
AT francescaprestori gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT claudiabonardi gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT lisamapelli gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT paolalombardo gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT riannegoselink gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT mariaegledestefano gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT danielagandolfi gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT jonathanmapelli gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT danielbertrand gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT martijnschonewille gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT chrisdezeeuw gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage AT egidiodangelo gatingoflongtermpotentiationbynicotinicacetylcholinereceptorsatthecerebelluminputstage |
_version_ |
1718423015811710976 |