An Overview on the Application of Graph Neural Networks in Wireless Networks
In recent years, with the rapid enhancement of computing power, deep learning methods have been widely applied in wireless networks and achieved impressive performance. To effectively exploit the information of graph-structured data as well as contextual information, graph neural networks (GNNs) hav...
Guardado en:
Autores principales: | Shiwen He, Shaowen Xiong, Yeyu Ou, Jian Zhang, Jiaheng Wang, Yongming Huang, Yaoxue Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0abffafb2d3d413db8743173689f09a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Special Section on Full-Duplex Transceivers for Future Networks: Theory and Techniques
por: Nghi H. Tran, et al.
Publicado: (2021) -
A Deep Neural Network-Based Multi-Label Classifier for SLA Violation Prediction in a Latency Sensitive NFV Application
por: Nikita Jalodia, et al.
Publicado: (2021) -
A New Covid-19 Tracing Approach using Machine Learning and Drones Enabled Wireless Network
por: Ayoub Alsarhan, et al.
Publicado: (2021) -
Motion Attitude Recognition and Behavior Prediction Algorithm Based on Wireless Sensor Network
por: Tianping Zhang, et al.
Publicado: (2021) -
Communications and Networking for Mobile Sink in Wireless Sensor Networks
por: Ki-Il Kim, et al.
Publicado: (2021)