Multiscale Entropy Analysis of Instantaneous Frequency Variation to Overcome the Cross-Over Artifact in Rhythmic EEG
Generally, for healthy adults, the entropy of electroencephalogram (EEG) signals gradually decreases from wake to sleep stages N1, N2, to N3, and increases during REM. However, some researchers found that multiscale entropy curves of sleep and wakefulness intercept, a cross-over phenomenon whose ori...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ac7c9fcba8f42ccbbbd4c8cab104b43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0ac7c9fcba8f42ccbbbd4c8cab104b43 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0ac7c9fcba8f42ccbbbd4c8cab104b432021-11-19T00:05:05ZMultiscale Entropy Analysis of Instantaneous Frequency Variation to Overcome the Cross-Over Artifact in Rhythmic EEG2169-353610.1109/ACCESS.2021.3051367https://doaj.org/article/0ac7c9fcba8f42ccbbbd4c8cab104b432021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9321409/https://doaj.org/toc/2169-3536Generally, for healthy adults, the entropy of electroencephalogram (EEG) signals gradually decreases from wake to sleep stages N1, N2, to N3, and increases during REM. However, some researchers found that multiscale entropy curves of sleep and wakefulness intercept, a cross-over phenomenon whose origin remains unexplored. The objective of the present work is to trace the origin of the cross-over phenomenon and to propose a workaround strategy. We simulated EEG by generating 1/f broadband signal and chirp signals with continuously varying frequencies. We then retrieved the rhythmic component from simulated EEG and real-world EEG and conducted MSE analysis of the instantaneous frequency variation (IFV) of the rhythmic component. The simulation revealed that this interception was ubiquitous in the MSE analysis of simulated EEG with rhythmic components of different frequencies. The cross-over point moved toward larger scale factors with the increasing sampling rate. We found that the MSE curve of IFV from real-world EEG for the wakefulness group was higher than that for sleep, showing no interception. These results suggest that (1) for a rhythmic signal like EEG, MSE analysis of the raw signal is highly affected by the rhythmic component, presenting artificial cross-over curves in sleep EEG study, (2) frequency variation of rhythmic components are complex signal which differs between wakefulness and sleep, in accordance with the complexity loss theory.Yan LiJuan LiuChi TangWei HanShengyi ZhouSiqi YangLong HeDa JingErping LuoKangning XieIEEEarticleMultiscale entropy analysiscomplexitysleepbrain waveElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 12896-12905 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Multiscale entropy analysis complexity sleep brain wave Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Multiscale entropy analysis complexity sleep brain wave Electrical engineering. Electronics. Nuclear engineering TK1-9971 Yan Li Juan Liu Chi Tang Wei Han Shengyi Zhou Siqi Yang Long He Da Jing Erping Luo Kangning Xie Multiscale Entropy Analysis of Instantaneous Frequency Variation to Overcome the Cross-Over Artifact in Rhythmic EEG |
description |
Generally, for healthy adults, the entropy of electroencephalogram (EEG) signals gradually decreases from wake to sleep stages N1, N2, to N3, and increases during REM. However, some researchers found that multiscale entropy curves of sleep and wakefulness intercept, a cross-over phenomenon whose origin remains unexplored. The objective of the present work is to trace the origin of the cross-over phenomenon and to propose a workaround strategy. We simulated EEG by generating 1/f broadband signal and chirp signals with continuously varying frequencies. We then retrieved the rhythmic component from simulated EEG and real-world EEG and conducted MSE analysis of the instantaneous frequency variation (IFV) of the rhythmic component. The simulation revealed that this interception was ubiquitous in the MSE analysis of simulated EEG with rhythmic components of different frequencies. The cross-over point moved toward larger scale factors with the increasing sampling rate. We found that the MSE curve of IFV from real-world EEG for the wakefulness group was higher than that for sleep, showing no interception. These results suggest that (1) for a rhythmic signal like EEG, MSE analysis of the raw signal is highly affected by the rhythmic component, presenting artificial cross-over curves in sleep EEG study, (2) frequency variation of rhythmic components are complex signal which differs between wakefulness and sleep, in accordance with the complexity loss theory. |
format |
article |
author |
Yan Li Juan Liu Chi Tang Wei Han Shengyi Zhou Siqi Yang Long He Da Jing Erping Luo Kangning Xie |
author_facet |
Yan Li Juan Liu Chi Tang Wei Han Shengyi Zhou Siqi Yang Long He Da Jing Erping Luo Kangning Xie |
author_sort |
Yan Li |
title |
Multiscale Entropy Analysis of Instantaneous Frequency Variation to Overcome the Cross-Over Artifact in Rhythmic EEG |
title_short |
Multiscale Entropy Analysis of Instantaneous Frequency Variation to Overcome the Cross-Over Artifact in Rhythmic EEG |
title_full |
Multiscale Entropy Analysis of Instantaneous Frequency Variation to Overcome the Cross-Over Artifact in Rhythmic EEG |
title_fullStr |
Multiscale Entropy Analysis of Instantaneous Frequency Variation to Overcome the Cross-Over Artifact in Rhythmic EEG |
title_full_unstemmed |
Multiscale Entropy Analysis of Instantaneous Frequency Variation to Overcome the Cross-Over Artifact in Rhythmic EEG |
title_sort |
multiscale entropy analysis of instantaneous frequency variation to overcome the cross-over artifact in rhythmic eeg |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/0ac7c9fcba8f42ccbbbd4c8cab104b43 |
work_keys_str_mv |
AT yanli multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT juanliu multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT chitang multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT weihan multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT shengyizhou multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT siqiyang multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT longhe multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT dajing multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT erpingluo multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg AT kangningxie multiscaleentropyanalysisofinstantaneousfrequencyvariationtoovercomethecrossoverartifactinrhythmiceeg |
_version_ |
1718420650061725696 |