Two-step machine learning enables optimized nanoparticle synthesis

Abstract In materials science, the discovery of recipes that yield nanomaterials with defined optical properties is costly and time-consuming. In this study, we present a two-step framework for a machine learning-driven high-throughput microfluidic platform to rapidly produce silver nanoparticles wi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Flore Mekki-Berrada, Zekun Ren, Tan Huang, Wai Kuan Wong, Fang Zheng, Jiaxun Xie, Isaac Parker Siyu Tian, Senthilnath Jayavelu, Zackaria Mahfoud, Daniil Bash, Kedar Hippalgaonkar, Saif Khan, Tonio Buonassisi, Qianxiao Li, Xiaonan Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/0ac9eaf9fc9e46a2ad63c0e8d956006b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0ac9eaf9fc9e46a2ad63c0e8d956006b
record_format dspace
spelling oai:doaj.org-article:0ac9eaf9fc9e46a2ad63c0e8d956006b2021-12-02T13:39:22ZTwo-step machine learning enables optimized nanoparticle synthesis10.1038/s41524-021-00520-w2057-3960https://doaj.org/article/0ac9eaf9fc9e46a2ad63c0e8d956006b2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00520-whttps://doaj.org/toc/2057-3960Abstract In materials science, the discovery of recipes that yield nanomaterials with defined optical properties is costly and time-consuming. In this study, we present a two-step framework for a machine learning-driven high-throughput microfluidic platform to rapidly produce silver nanoparticles with the desired absorbance spectrum. Combining a Gaussian process-based Bayesian optimization (BO) with a deep neural network (DNN), the algorithmic framework is able to converge towards the target spectrum after sampling 120 conditions. Once the dataset is large enough to train the DNN with sufficient accuracy in the region of the target spectrum, the DNN is used to predict the colour palette accessible with the reaction synthesis. While remaining interpretable by humans, the proposed framework efficiently optimizes the nanomaterial synthesis and can extract fundamental knowledge of the relationship between chemical composition and optical properties, such as the role of each reactant on the shape and amplitude of the absorbance spectrum.Flore Mekki-BerradaZekun RenTan HuangWai Kuan WongFang ZhengJiaxun XieIsaac Parker Siyu TianSenthilnath JayaveluZackaria MahfoudDaniil BashKedar HippalgaonkarSaif KhanTonio BuonassisiQianxiao LiXiaonan WangNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Flore Mekki-Berrada
Zekun Ren
Tan Huang
Wai Kuan Wong
Fang Zheng
Jiaxun Xie
Isaac Parker Siyu Tian
Senthilnath Jayavelu
Zackaria Mahfoud
Daniil Bash
Kedar Hippalgaonkar
Saif Khan
Tonio Buonassisi
Qianxiao Li
Xiaonan Wang
Two-step machine learning enables optimized nanoparticle synthesis
description Abstract In materials science, the discovery of recipes that yield nanomaterials with defined optical properties is costly and time-consuming. In this study, we present a two-step framework for a machine learning-driven high-throughput microfluidic platform to rapidly produce silver nanoparticles with the desired absorbance spectrum. Combining a Gaussian process-based Bayesian optimization (BO) with a deep neural network (DNN), the algorithmic framework is able to converge towards the target spectrum after sampling 120 conditions. Once the dataset is large enough to train the DNN with sufficient accuracy in the region of the target spectrum, the DNN is used to predict the colour palette accessible with the reaction synthesis. While remaining interpretable by humans, the proposed framework efficiently optimizes the nanomaterial synthesis and can extract fundamental knowledge of the relationship between chemical composition and optical properties, such as the role of each reactant on the shape and amplitude of the absorbance spectrum.
format article
author Flore Mekki-Berrada
Zekun Ren
Tan Huang
Wai Kuan Wong
Fang Zheng
Jiaxun Xie
Isaac Parker Siyu Tian
Senthilnath Jayavelu
Zackaria Mahfoud
Daniil Bash
Kedar Hippalgaonkar
Saif Khan
Tonio Buonassisi
Qianxiao Li
Xiaonan Wang
author_facet Flore Mekki-Berrada
Zekun Ren
Tan Huang
Wai Kuan Wong
Fang Zheng
Jiaxun Xie
Isaac Parker Siyu Tian
Senthilnath Jayavelu
Zackaria Mahfoud
Daniil Bash
Kedar Hippalgaonkar
Saif Khan
Tonio Buonassisi
Qianxiao Li
Xiaonan Wang
author_sort Flore Mekki-Berrada
title Two-step machine learning enables optimized nanoparticle synthesis
title_short Two-step machine learning enables optimized nanoparticle synthesis
title_full Two-step machine learning enables optimized nanoparticle synthesis
title_fullStr Two-step machine learning enables optimized nanoparticle synthesis
title_full_unstemmed Two-step machine learning enables optimized nanoparticle synthesis
title_sort two-step machine learning enables optimized nanoparticle synthesis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0ac9eaf9fc9e46a2ad63c0e8d956006b
work_keys_str_mv AT floremekkiberrada twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT zekunren twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT tanhuang twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT waikuanwong twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT fangzheng twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT jiaxunxie twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT isaacparkersiyutian twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT senthilnathjayavelu twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT zackariamahfoud twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT daniilbash twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT kedarhippalgaonkar twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT saifkhan twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT toniobuonassisi twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT qianxiaoli twostepmachinelearningenablesoptimizednanoparticlesynthesis
AT xiaonanwang twostepmachinelearningenablesoptimizednanoparticlesynthesis
_version_ 1718392596914503680