Two-step machine learning enables optimized nanoparticle synthesis
Abstract In materials science, the discovery of recipes that yield nanomaterials with defined optical properties is costly and time-consuming. In this study, we present a two-step framework for a machine learning-driven high-throughput microfluidic platform to rapidly produce silver nanoparticles wi...
Guardado en:
Autores principales: | Flore Mekki-Berrada, Zekun Ren, Tan Huang, Wai Kuan Wong, Fang Zheng, Jiaxun Xie, Isaac Parker Siyu Tian, Senthilnath Jayavelu, Zackaria Mahfoud, Daniil Bash, Kedar Hippalgaonkar, Saif Khan, Tonio Buonassisi, Qianxiao Li, Xiaonan Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ac9eaf9fc9e46a2ad63c0e8d956006b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains
por: Qiaohao Liang, et al.
Publicado: (2021) -
A study of real-world micrograph data quality and machine learning model robustness
por: Xiaoting Zhong, et al.
Publicado: (2021) -
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
por: Svetoslav Nikolov, et al.
Publicado: (2021) -
Exploiting the quantum mechanically derived force field for functional materials simulations
por: Alexey Odinokov, et al.
Publicado: (2021) -
Symmetry-aware recursive image similarity exploration for materials microscopy
por: Tri N. M. Nguyen, et al.
Publicado: (2021)