Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China

The Shiyang River Basin is a typical arid watershed in Northwest China. Scientific understanding of the driving mechanism of runoff change is the basis of scientific utilization of water resources and regional sustainable development. In this study, runoff changes at different time scales were analy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dongxiang Xue, Junju Zhou, Xi Zhao, Chunfang Liu, Wei Wei, Xuemei Yang, Qiaoqiao Li, Yaru Zhao
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/0af230c9dfa84954a358ed215460a314
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0af230c9dfa84954a358ed215460a314
record_format dspace
spelling oai:doaj.org-article:0af230c9dfa84954a358ed215460a3142021-12-01T04:32:27ZImpacts of climate change and human activities on runoff change in a typical arid watershed, NW China1470-160X10.1016/j.ecolind.2020.107013https://doaj.org/article/0af230c9dfa84954a358ed215460a3142021-02-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X20309523https://doaj.org/toc/1470-160XThe Shiyang River Basin is a typical arid watershed in Northwest China. Scientific understanding of the driving mechanism of runoff change is the basis of scientific utilization of water resources and regional sustainable development. In this study, runoff changes at different time scales were analyzed for the period 1960–2018, and the impacts of climate variability and human activities on runoff were investigated in the middle and lower reaches of the Shiyang River Basin (SRB). A combination of mutation analysis and human-designed analysis was adopted to divide the study period into the baseline period and the variation period. The Mann–Kendall test (M−K) and Double Mass Curve method (DMC) were used to detect abrupt changes and quantify the relative effects of climate change and human activities on runoff. The results reveal a significant declining trend in annual runoff on the whole in the middle and lower reaches of the SRB, and there was an obvious recovery trend after the implementation of the Comprehensive Treatment Program of the SRB (CTSRB) in 2007. Abrupt changes occurred in 1976, 1991 and 2007, which divided the study period into the baseline period (1960–1975), the Variation Ⅰ period (1976–1990), the Variation Ⅱ period (1991–2006) and the Variation III period (2007–2018). The contribution of human activities to runoff reduction was 88.72%, whereas the contribution of climate change to runoff reduction was only 11.28%. Furthermore, the contribution of human activities to runoff reduction in the Variation Ⅰ period, Variation Ⅱ period and Variation III period was 89.44%, 93.02% and 83.69%, respectively. Therefore, human activities played the most dominant role in the variation of runoff, followed by climate change and upstream runoff. Further analysis of the impact of human activities on runoff indicated that agricultural irrigation was the dominant factor of runoff reduction. This study can provide detailed information on water resources and a scientific basis for the development and utilization of water resources in the future.Dongxiang XueJunju ZhouXi ZhaoChunfang LiuWei WeiXuemei YangQiaoqiao LiYaru ZhaoElsevierarticleClimate changeHuman activitiesRunoffShiyang River Basin (SRB)Quantitative assessmentEcologyQH540-549.5ENEcological Indicators, Vol 121, Iss , Pp 107013- (2021)
institution DOAJ
collection DOAJ
language EN
topic Climate change
Human activities
Runoff
Shiyang River Basin (SRB)
Quantitative assessment
Ecology
QH540-549.5
spellingShingle Climate change
Human activities
Runoff
Shiyang River Basin (SRB)
Quantitative assessment
Ecology
QH540-549.5
Dongxiang Xue
Junju Zhou
Xi Zhao
Chunfang Liu
Wei Wei
Xuemei Yang
Qiaoqiao Li
Yaru Zhao
Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China
description The Shiyang River Basin is a typical arid watershed in Northwest China. Scientific understanding of the driving mechanism of runoff change is the basis of scientific utilization of water resources and regional sustainable development. In this study, runoff changes at different time scales were analyzed for the period 1960–2018, and the impacts of climate variability and human activities on runoff were investigated in the middle and lower reaches of the Shiyang River Basin (SRB). A combination of mutation analysis and human-designed analysis was adopted to divide the study period into the baseline period and the variation period. The Mann–Kendall test (M−K) and Double Mass Curve method (DMC) were used to detect abrupt changes and quantify the relative effects of climate change and human activities on runoff. The results reveal a significant declining trend in annual runoff on the whole in the middle and lower reaches of the SRB, and there was an obvious recovery trend after the implementation of the Comprehensive Treatment Program of the SRB (CTSRB) in 2007. Abrupt changes occurred in 1976, 1991 and 2007, which divided the study period into the baseline period (1960–1975), the Variation Ⅰ period (1976–1990), the Variation Ⅱ period (1991–2006) and the Variation III period (2007–2018). The contribution of human activities to runoff reduction was 88.72%, whereas the contribution of climate change to runoff reduction was only 11.28%. Furthermore, the contribution of human activities to runoff reduction in the Variation Ⅰ period, Variation Ⅱ period and Variation III period was 89.44%, 93.02% and 83.69%, respectively. Therefore, human activities played the most dominant role in the variation of runoff, followed by climate change and upstream runoff. Further analysis of the impact of human activities on runoff indicated that agricultural irrigation was the dominant factor of runoff reduction. This study can provide detailed information on water resources and a scientific basis for the development and utilization of water resources in the future.
format article
author Dongxiang Xue
Junju Zhou
Xi Zhao
Chunfang Liu
Wei Wei
Xuemei Yang
Qiaoqiao Li
Yaru Zhao
author_facet Dongxiang Xue
Junju Zhou
Xi Zhao
Chunfang Liu
Wei Wei
Xuemei Yang
Qiaoqiao Li
Yaru Zhao
author_sort Dongxiang Xue
title Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China
title_short Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China
title_full Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China
title_fullStr Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China
title_full_unstemmed Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China
title_sort impacts of climate change and human activities on runoff change in a typical arid watershed, nw china
publisher Elsevier
publishDate 2021
url https://doaj.org/article/0af230c9dfa84954a358ed215460a314
work_keys_str_mv AT dongxiangxue impactsofclimatechangeandhumanactivitiesonrunoffchangeinatypicalaridwatershednwchina
AT junjuzhou impactsofclimatechangeandhumanactivitiesonrunoffchangeinatypicalaridwatershednwchina
AT xizhao impactsofclimatechangeandhumanactivitiesonrunoffchangeinatypicalaridwatershednwchina
AT chunfangliu impactsofclimatechangeandhumanactivitiesonrunoffchangeinatypicalaridwatershednwchina
AT weiwei impactsofclimatechangeandhumanactivitiesonrunoffchangeinatypicalaridwatershednwchina
AT xuemeiyang impactsofclimatechangeandhumanactivitiesonrunoffchangeinatypicalaridwatershednwchina
AT qiaoqiaoli impactsofclimatechangeandhumanactivitiesonrunoffchangeinatypicalaridwatershednwchina
AT yaruzhao impactsofclimatechangeandhumanactivitiesonrunoffchangeinatypicalaridwatershednwchina
_version_ 1718405824981762048