A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.

<h4>Aims</h4>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elton Rexhepaj, Margrét Agnarsdóttir, Julia Bergman, Per-Henrik Edqvist, Michael Bergqvist, Mathias Uhlén, William M Gallagher, Emma Lundberg, Fredrik Ponten
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0b0093dc71424933a9e09b0c9152cdd8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0b0093dc71424933a9e09b0c9152cdd8
record_format dspace
spelling oai:doaj.org-article:0b0093dc71424933a9e09b0c9152cdd82021-11-18T07:45:23ZA texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.1932-620310.1371/journal.pone.0062070https://doaj.org/article/0b0093dc71424933a9e09b0c9152cdd82013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23690928/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Aims</h4>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative.<h4>Methods and results</h4>Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157).<h4>Conclusion</h4>Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.Elton RexhepajMargrét AgnarsdóttirJulia BergmanPer-Henrik EdqvistMichael BergqvistMathias UhlénWilliam M GallagherEmma LundbergFredrik PontenPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 5, p e62070 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Elton Rexhepaj
Margrét Agnarsdóttir
Julia Bergman
Per-Henrik Edqvist
Michael Bergqvist
Mathias Uhlén
William M Gallagher
Emma Lundberg
Fredrik Ponten
A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.
description <h4>Aims</h4>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative.<h4>Methods and results</h4>Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157).<h4>Conclusion</h4>Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.
format article
author Elton Rexhepaj
Margrét Agnarsdóttir
Julia Bergman
Per-Henrik Edqvist
Michael Bergqvist
Mathias Uhlén
William M Gallagher
Emma Lundberg
Fredrik Ponten
author_facet Elton Rexhepaj
Margrét Agnarsdóttir
Julia Bergman
Per-Henrik Edqvist
Michael Bergqvist
Mathias Uhlén
William M Gallagher
Emma Lundberg
Fredrik Ponten
author_sort Elton Rexhepaj
title A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.
title_short A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.
title_full A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.
title_fullStr A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.
title_full_unstemmed A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.
title_sort texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/0b0093dc71424933a9e09b0c9152cdd8
work_keys_str_mv AT eltonrexhepaj atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT margretagnarsdottir atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT juliabergman atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT perhenrikedqvist atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT michaelbergqvist atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT mathiasuhlen atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT williammgallagher atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT emmalundberg atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT fredrikponten atexturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT eltonrexhepaj texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT margretagnarsdottir texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT juliabergman texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT perhenrikedqvist texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT michaelbergqvist texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT mathiasuhlen texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT williammgallagher texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT emmalundberg texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
AT fredrikponten texturebasedpatternrecognitionapproachtodistinguishmelanomafromnonmelanomacellsinhistopathologicaltissuemicroarraysections
_version_ 1718422953134129152