High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus

Abstract Alterations in brain cholesterol homeostasis in midlife are correlated with a higher risk of developing Alzheimer’s disease (AD). However, global cholesterol-lowering therapies have yielded mixed results when it comes to slowing down or preventing cognitive decline in AD. We used the transg...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Raul Loera-Valencia, Erika Vazquez-Juarez, Alberto Muñoz, Gorka Gerenu, Marta Gómez-Galán, Maria Lindskog, Javier DeFelipe, Angel Cedazo-Minguez, Paula Merino-Serrais
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0b049b45ec844c18afc7850c0fa00835
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0b049b45ec844c18afc7850c0fa00835
record_format dspace
spelling oai:doaj.org-article:0b049b45ec844c18afc7850c0fa008352021-12-02T14:11:31ZHigh levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus10.1038/s41598-021-83008-32045-2322https://doaj.org/article/0b049b45ec844c18afc7850c0fa008352021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83008-3https://doaj.org/toc/2045-2322Abstract Alterations in brain cholesterol homeostasis in midlife are correlated with a higher risk of developing Alzheimer’s disease (AD). However, global cholesterol-lowering therapies have yielded mixed results when it comes to slowing down or preventing cognitive decline in AD. We used the transgenic mouse model Cyp27Tg, with systemically high levels of 27-hydroxycholesterol (27-OH) to examine long-term potentiation (LTP) in the hippocampal CA1 region, combined with dendritic spine reconstruction of CA1 pyramidal neurons to detect morphological and functional synaptic alterations induced by 27-OH high levels. Our results show that elevated 27-OH levels lead to enhanced LTP in the Schaffer collateral-CA1 synapses. This increase is correlated with abnormally large dendritic spines in the stratum radiatum. Using immunohistochemistry for synaptopodin (actin-binding protein involved in the recruitment of the spine apparatus), we found a significantly higher density of synaptopodin-positive puncta in CA1 in Cyp27Tg mice. We hypothesize that high 27-OH levels alter synaptic potentiation and could lead to dysfunction of fine-tuned processing of information in hippocampal circuits resulting in cognitive impairment. We suggest that these alterations could be detrimental for synaptic function and cognition later in life, representing a potential mechanism by which hypercholesterolemia could lead to alterations in memory function in neurodegenerative diseases.Raul Loera-ValenciaErika Vazquez-JuarezAlberto MuñozGorka GerenuMarta Gómez-GalánMaria LindskogJavier DeFelipeAngel Cedazo-MinguezPaula Merino-SerraisNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Raul Loera-Valencia
Erika Vazquez-Juarez
Alberto Muñoz
Gorka Gerenu
Marta Gómez-Galán
Maria Lindskog
Javier DeFelipe
Angel Cedazo-Minguez
Paula Merino-Serrais
High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus
description Abstract Alterations in brain cholesterol homeostasis in midlife are correlated with a higher risk of developing Alzheimer’s disease (AD). However, global cholesterol-lowering therapies have yielded mixed results when it comes to slowing down or preventing cognitive decline in AD. We used the transgenic mouse model Cyp27Tg, with systemically high levels of 27-hydroxycholesterol (27-OH) to examine long-term potentiation (LTP) in the hippocampal CA1 region, combined with dendritic spine reconstruction of CA1 pyramidal neurons to detect morphological and functional synaptic alterations induced by 27-OH high levels. Our results show that elevated 27-OH levels lead to enhanced LTP in the Schaffer collateral-CA1 synapses. This increase is correlated with abnormally large dendritic spines in the stratum radiatum. Using immunohistochemistry for synaptopodin (actin-binding protein involved in the recruitment of the spine apparatus), we found a significantly higher density of synaptopodin-positive puncta in CA1 in Cyp27Tg mice. We hypothesize that high 27-OH levels alter synaptic potentiation and could lead to dysfunction of fine-tuned processing of information in hippocampal circuits resulting in cognitive impairment. We suggest that these alterations could be detrimental for synaptic function and cognition later in life, representing a potential mechanism by which hypercholesterolemia could lead to alterations in memory function in neurodegenerative diseases.
format article
author Raul Loera-Valencia
Erika Vazquez-Juarez
Alberto Muñoz
Gorka Gerenu
Marta Gómez-Galán
Maria Lindskog
Javier DeFelipe
Angel Cedazo-Minguez
Paula Merino-Serrais
author_facet Raul Loera-Valencia
Erika Vazquez-Juarez
Alberto Muñoz
Gorka Gerenu
Marta Gómez-Galán
Maria Lindskog
Javier DeFelipe
Angel Cedazo-Minguez
Paula Merino-Serrais
author_sort Raul Loera-Valencia
title High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus
title_short High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus
title_full High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus
title_fullStr High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus
title_full_unstemmed High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus
title_sort high levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0b049b45ec844c18afc7850c0fa00835
work_keys_str_mv AT raulloeravalencia highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
AT erikavazquezjuarez highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
AT albertomunoz highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
AT gorkagerenu highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
AT martagomezgalan highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
AT marialindskog highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
AT javierdefelipe highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
AT angelcedazominguez highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
AT paulamerinoserrais highlevelsof27hydroxycholesterolresultsinsynapticplasticityalterationsinthehippocampus
_version_ 1718391827034275840