Dynamics of nonspherical, fractal-like water-ice particles in a plasma environment
Abstract Plasmas containing small solid-state particles (also known as dust particles) are ubiquitous in nature and laboratories. Existing models typically assume that the dust particles are spherical but several observations and simulations indicate that a significant amount of dust particles are n...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0b057a85728640db837af36088db898e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Plasmas containing small solid-state particles (also known as dust particles) are ubiquitous in nature and laboratories. Existing models typically assume that the dust particles are spherical but several observations and simulations indicate that a significant amount of dust particles are nonspherical. Because dust particles are not spherical they show different dynamics from spherical particles in a plasma environment namely, they align in the direction perpendicular to the force equilibrium line, rotate about their alignment axis due to the interaction between the dipole moment and the surrounding electric field, and show vortex motion while maintaining their alignment and rotation when they are exposed to a nonconservative drag force. |
---|