Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas – Part 1: Differentiating marine emission from continental transport

<p>To study sea-derived gaseous amines, ammonia, and primary particulate aminium ions in the marine atmosphere of China's marginal seas, an onboard URG-9000D Ambient Ion Monitor-Ion Chromatograph (AIM-IC, Thermo Fisher) was set up on the front deck of the R/V <i>Dongfanghong-3</i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: D. Chen, Y. Shen, J. Wang, Y. Gao, H. Gao, X. Yao
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/0b09cab42333485eb154f832a0545f55
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0b09cab42333485eb154f832a0545f55
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
D. Chen
Y. Shen
J. Wang
Y. Gao
Y. Gao
H. Gao
H. Gao
X. Yao
X. Yao
Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas – Part 1: Differentiating marine emission from continental transport
description <p>To study sea-derived gaseous amines, ammonia, and primary particulate aminium ions in the marine atmosphere of China's marginal seas, an onboard URG-9000D Ambient Ion Monitor-Ion Chromatograph (AIM-IC, Thermo Fisher) was set up on the front deck of the R/V <i>Dongfanghong-3</i> to semi-continuously measure the spatiotemporal variations in the concentrations of atmospheric trimethylamine (TMA<span class="inline-formula"><sub>gas</sub></span>), dimethylamine (DMA<span class="inline-formula"><sub>gas</sub></span>), and ammonia (<span class="inline-formula">NH<sub>3gas</sub></span>) along with their particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) counterparts. In this study, we differentiated marine emissions of the gas species from continental transport using data obtained from 9 to 22 December 2019 during the cruise over the Yellow and Bohai seas, facilitated by additional short-term measurements collected at a coastal site near the Yellow Sea during the summer, fall, and winter of 2019. The data obtained from the cruise and coastal sites demonstrated that the observed TMA<span class="inline-formula"><sub>gas</sub></span> and protonated trimethylamine (TMAH<span class="inline-formula"><sup>+</sup></span>) in PM<span class="inline-formula"><sub>2.5</sub></span> over the Yellow and Bohai seas overwhelmingly originated from marine sources. During the cruise, no significant correlation (<span class="inline-formula"><i>P</i>&gt;0.05</span>) was observed between the simultaneously measured TMAH<span class="inline-formula"><sup>+</sup></span> and TMA<span class="inline-formula"><sub>gas</sub></span> concentrations. Additionally, the concentrations of TMAH<span class="inline-formula"><sup>+</sup></span> in the marine atmosphere varied around <span class="inline-formula">0.28±0.18</span> <span class="inline-formula">µg m<sup>−3</sup></span> (average <span class="inline-formula">±</span> standard deviation), with several episodic hourly average values exceeding 1 <span class="inline-formula">µg m<sup>−3</sup></span>, which were approximately 1 order of magnitude larger than those of TMA<span class="inline-formula"><sub>gas</sub></span> (approximately <span class="inline-formula">0.031±0.009</span> <span class="inline-formula">µg m<sup>−3</sup></span>). Moreover, there was a significant negative correlation (<span class="inline-formula"><i>P</i>&lt;0.01</span>) between the concentrations of TMAH<span class="inline-formula"><sup>+</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="df1f0fc1093d7c213f3735ccc009a4e7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00001.svg" width="29pt" height="14pt" src="acp-21-16413-2021-ie00001.png"/></svg:svg></span></span> in PM<span class="inline-formula"><sub>2.5</sub></span>. Therefore, the observed TMAH<span class="inline-formula"><sup>+</sup></span> in PM<span class="inline-formula"><sub>2.5</sub></span> was overwhelmingly derived from primary sea-spray aerosols. Using TMA<span class="inline-formula"><sub>gas</sub></span> and TMAH<span class="inline-formula"><sup>+</sup></span> in PM<span class="inline-formula"><sub>2.5</sub></span> as tracers for sea-derived basic gases and sea-spray particulate aminium ions, the values of non-sea-derived DMA<span class="inline-formula"><sub>gas</sub></span>, <span class="inline-formula">NH<sub>3gas</sub></span>, and non-sea-spray particulate DMAH<span class="inline-formula"><sup>+</sup></span> in PM<span class="inline-formula"><sub>2.5</sub></span> were estimated. The estimated average values of each species contributed 16 %, 34 %, and 65 % of the observed average concentrations for non-sea-derived DMA<span class="inline-formula"><sub>gas</sub></span>, <span class="inline-formula">NH<sub>3gas</sub></span>, and non-sea-spray particulate DMAH<span class="inline-formula"><sup>+</sup></span> in PM<span class="inline-formula"><sub>2.5</sub></span>, respectively. Uncertainties remained in the estimations, as TMAH<span class="inline-formula"><sup>+</sup></span> may decompose into smaller molecules in seawater to varying extents. The non-sea-derived gases and non-sea-spray particulate DMAH<span class="inline-formula"><sup>+</sup></span> likely originated from long-range transport from the upwind continents based on the recorded offshore winds and increased concentrations of non-sea-salt <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn></msub><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="61181720b4e129b8ce7d7bf8e7fb56af"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00002.svg" width="34pt" height="16pt" src="acp-21-16413-2021-ie00002.png"/></svg:svg></span></span> (nss-<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn></msub><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="931004d6f3751a00b1fe721f8caa5d5e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00003.svg" width="34pt" height="16pt" src="acp-21-16413-2021-ie00003.png"/></svg:svg></span></span>) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M40" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9dc882e152edb8830cdea3e4b4fa1729"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00004.svg" width="29pt" height="14pt" src="acp-21-16413-2021-ie00004.png"/></svg:svg></span></span> in PM<span class="inline-formula"><sub>2.5</sub></span>. The lack of a detectable increase in particulate DMAH<span class="inline-formula"><sup>+</sup></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M43" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1e12af20907fc5fee0a99900be272a3f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00005.svg" width="29pt" height="14pt" src="acp-21-16413-2021-ie00005.png"/></svg:svg></span></span>, and nss-<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M44" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn></msub><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="49b217b63d1c482925a977dc3467ca54"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00006.svg" width="34pt" height="16pt" src="acp-21-16413-2021-ie00006.png"/></svg:svg></span></span> concentrations in several <span class="inline-formula">SO<sub>2</sub></span> plumes did not support the secondary formation of particulate DMAH<span class="inline-formula"><sup>+</sup></span> in the marine atmosphere.</p>
format article
author D. Chen
Y. Shen
J. Wang
Y. Gao
Y. Gao
H. Gao
H. Gao
X. Yao
X. Yao
author_facet D. Chen
Y. Shen
J. Wang
Y. Gao
Y. Gao
H. Gao
H. Gao
X. Yao
X. Yao
author_sort D. Chen
title Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas – Part 1: Differentiating marine emission from continental transport
title_short Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas – Part 1: Differentiating marine emission from continental transport
title_full Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas – Part 1: Differentiating marine emission from continental transport
title_fullStr Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas – Part 1: Differentiating marine emission from continental transport
title_full_unstemmed Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas – Part 1: Differentiating marine emission from continental transport
title_sort mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of china's marginal seas – part 1: differentiating marine emission from continental transport
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/0b09cab42333485eb154f832a0545f55
work_keys_str_mv AT dchen mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
AT yshen mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
AT jwang mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
AT ygao mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
AT ygao mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
AT hgao mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
AT hgao mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
AT xyao mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
AT xyao mappinggaseousdimethylaminetrimethylamineammoniaandtheirparticulatecounterpartsinmarineatmospheresofchinasmarginalseaspart1differentiatingmarineemissionfromcontinentaltransport
_version_ 1718440990880038912
spelling oai:doaj.org-article:0b09cab42333485eb154f832a0545f552021-11-09T12:48:44ZMapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas – Part 1: Differentiating marine emission from continental transport10.5194/acp-21-16413-20211680-73161680-7324https://doaj.org/article/0b09cab42333485eb154f832a0545f552021-11-01T00:00:00Zhttps://acp.copernicus.org/articles/21/16413/2021/acp-21-16413-2021.pdfhttps://doaj.org/toc/1680-7316https://doaj.org/toc/1680-7324<p>To study sea-derived gaseous amines, ammonia, and primary particulate aminium ions in the marine atmosphere of China's marginal seas, an onboard URG-9000D Ambient Ion Monitor-Ion Chromatograph (AIM-IC, Thermo Fisher) was set up on the front deck of the R/V <i>Dongfanghong-3</i> to semi-continuously measure the spatiotemporal variations in the concentrations of atmospheric trimethylamine (TMA<span class="inline-formula"><sub>gas</sub></span>), dimethylamine (DMA<span class="inline-formula"><sub>gas</sub></span>), and ammonia (<span class="inline-formula">NH<sub>3gas</sub></span>) along with their particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) counterparts. In this study, we differentiated marine emissions of the gas species from continental transport using data obtained from 9 to 22 December 2019 during the cruise over the Yellow and Bohai seas, facilitated by additional short-term measurements collected at a coastal site near the Yellow Sea during the summer, fall, and winter of 2019. The data obtained from the cruise and coastal sites demonstrated that the observed TMA<span class="inline-formula"><sub>gas</sub></span> and protonated trimethylamine (TMAH<span class="inline-formula"><sup>+</sup></span>) in PM<span class="inline-formula"><sub>2.5</sub></span> over the Yellow and Bohai seas overwhelmingly originated from marine sources. During the cruise, no significant correlation (<span class="inline-formula"><i>P</i>&gt;0.05</span>) was observed between the simultaneously measured TMAH<span class="inline-formula"><sup>+</sup></span> and TMA<span class="inline-formula"><sub>gas</sub></span> concentrations. Additionally, the concentrations of TMAH<span class="inline-formula"><sup>+</sup></span> in the marine atmosphere varied around <span class="inline-formula">0.28±0.18</span> <span class="inline-formula">µg m<sup>−3</sup></span> (average <span class="inline-formula">±</span> standard deviation), with several episodic hourly average values exceeding 1 <span class="inline-formula">µg m<sup>−3</sup></span>, which were approximately 1 order of magnitude larger than those of TMA<span class="inline-formula"><sub>gas</sub></span> (approximately <span class="inline-formula">0.031±0.009</span> <span class="inline-formula">µg m<sup>−3</sup></span>). Moreover, there was a significant negative correlation (<span class="inline-formula"><i>P</i>&lt;0.01</span>) between the concentrations of TMAH<span class="inline-formula"><sup>+</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="df1f0fc1093d7c213f3735ccc009a4e7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00001.svg" width="29pt" height="14pt" src="acp-21-16413-2021-ie00001.png"/></svg:svg></span></span> in PM<span class="inline-formula"><sub>2.5</sub></span>. Therefore, the observed TMAH<span class="inline-formula"><sup>+</sup></span> in PM<span class="inline-formula"><sub>2.5</sub></span> was overwhelmingly derived from primary sea-spray aerosols. Using TMA<span class="inline-formula"><sub>gas</sub></span> and TMAH<span class="inline-formula"><sup>+</sup></span> in PM<span class="inline-formula"><sub>2.5</sub></span> as tracers for sea-derived basic gases and sea-spray particulate aminium ions, the values of non-sea-derived DMA<span class="inline-formula"><sub>gas</sub></span>, <span class="inline-formula">NH<sub>3gas</sub></span>, and non-sea-spray particulate DMAH<span class="inline-formula"><sup>+</sup></span> in PM<span class="inline-formula"><sub>2.5</sub></span> were estimated. The estimated average values of each species contributed 16 %, 34 %, and 65 % of the observed average concentrations for non-sea-derived DMA<span class="inline-formula"><sub>gas</sub></span>, <span class="inline-formula">NH<sub>3gas</sub></span>, and non-sea-spray particulate DMAH<span class="inline-formula"><sup>+</sup></span> in PM<span class="inline-formula"><sub>2.5</sub></span>, respectively. Uncertainties remained in the estimations, as TMAH<span class="inline-formula"><sup>+</sup></span> may decompose into smaller molecules in seawater to varying extents. The non-sea-derived gases and non-sea-spray particulate DMAH<span class="inline-formula"><sup>+</sup></span> likely originated from long-range transport from the upwind continents based on the recorded offshore winds and increased concentrations of non-sea-salt <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn></msub><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="61181720b4e129b8ce7d7bf8e7fb56af"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00002.svg" width="34pt" height="16pt" src="acp-21-16413-2021-ie00002.png"/></svg:svg></span></span> (nss-<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn></msub><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="931004d6f3751a00b1fe721f8caa5d5e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00003.svg" width="34pt" height="16pt" src="acp-21-16413-2021-ie00003.png"/></svg:svg></span></span>) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M40" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9dc882e152edb8830cdea3e4b4fa1729"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00004.svg" width="29pt" height="14pt" src="acp-21-16413-2021-ie00004.png"/></svg:svg></span></span> in PM<span class="inline-formula"><sub>2.5</sub></span>. The lack of a detectable increase in particulate DMAH<span class="inline-formula"><sup>+</sup></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M43" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1e12af20907fc5fee0a99900be272a3f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00005.svg" width="29pt" height="14pt" src="acp-21-16413-2021-ie00005.png"/></svg:svg></span></span>, and nss-<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M44" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn></msub><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="49b217b63d1c482925a977dc3467ca54"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16413-2021-ie00006.svg" width="34pt" height="16pt" src="acp-21-16413-2021-ie00006.png"/></svg:svg></span></span> concentrations in several <span class="inline-formula">SO<sub>2</sub></span> plumes did not support the secondary formation of particulate DMAH<span class="inline-formula"><sup>+</sup></span> in the marine atmosphere.</p>D. ChenY. ShenJ. WangY. GaoY. GaoH. GaoH. GaoX. YaoX. YaoCopernicus PublicationsarticlePhysicsQC1-999ChemistryQD1-999ENAtmospheric Chemistry and Physics, Vol 21, Pp 16413-16425 (2021)