Imaging the transmembrane and transendothelial sodium gradients in gliomas

Abstract Under normal conditions, high sodium (Na+) in extracellular (Na+ e) and blood (Na+ b) compartments and low Na+ in intracellular milieu (Na+ i) produce strong transmembrane (ΔNa+ mem) and weak transendothelial (ΔNa+ end) gradients respectively, and these manifest the cell membrane potential...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muhammad H. Khan, John J. Walsh, Jelena M. Mihailović, Sandeep K. Mishra, Daniel Coman, Fahmeed Hyder
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0b22d92edfa14ae2a68ade6c68957ff3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0b22d92edfa14ae2a68ade6c68957ff3
record_format dspace
spelling oai:doaj.org-article:0b22d92edfa14ae2a68ade6c68957ff32021-12-02T16:36:11ZImaging the transmembrane and transendothelial sodium gradients in gliomas10.1038/s41598-021-85925-92045-2322https://doaj.org/article/0b22d92edfa14ae2a68ade6c68957ff32021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85925-9https://doaj.org/toc/2045-2322Abstract Under normal conditions, high sodium (Na+) in extracellular (Na+ e) and blood (Na+ b) compartments and low Na+ in intracellular milieu (Na+ i) produce strong transmembrane (ΔNa+ mem) and weak transendothelial (ΔNa+ end) gradients respectively, and these manifest the cell membrane potential (V m ) as well as blood–brain barrier (BBB) integrity. We developed a sodium (23Na) magnetic resonance spectroscopic imaging (MRSI) method using an intravenously-administered paramagnetic polyanionic agent to measure ΔNa+ mem and ΔNa+ end. In vitro 23Na-MRSI established that the 23Na signal is intensely shifted by the agent compared to other biological factors (e.g., pH and temperature). In vivo 23Na-MRSI showed Na+ i remained unshifted and Na+ b was more shifted than Na+ e, and these together revealed weakened ΔNa+ mem and enhanced ΔNa+ end in rat gliomas (vs. normal tissue). Compared to normal tissue, RG2 and U87 tumors maintained weakened ΔNa+ mem (i.e., depolarized V m ) implying an aggressive state for proliferation, whereas RG2 tumors displayed elevated ∆Na+ end suggesting altered BBB integrity. We anticipate that 23Na-MRSI will allow biomedical explorations of perturbed Na+ homeostasis in vivo.Muhammad H. KhanJohn J. WalshJelena M. MihailovićSandeep K. MishraDaniel ComanFahmeed HyderNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Muhammad H. Khan
John J. Walsh
Jelena M. Mihailović
Sandeep K. Mishra
Daniel Coman
Fahmeed Hyder
Imaging the transmembrane and transendothelial sodium gradients in gliomas
description Abstract Under normal conditions, high sodium (Na+) in extracellular (Na+ e) and blood (Na+ b) compartments and low Na+ in intracellular milieu (Na+ i) produce strong transmembrane (ΔNa+ mem) and weak transendothelial (ΔNa+ end) gradients respectively, and these manifest the cell membrane potential (V m ) as well as blood–brain barrier (BBB) integrity. We developed a sodium (23Na) magnetic resonance spectroscopic imaging (MRSI) method using an intravenously-administered paramagnetic polyanionic agent to measure ΔNa+ mem and ΔNa+ end. In vitro 23Na-MRSI established that the 23Na signal is intensely shifted by the agent compared to other biological factors (e.g., pH and temperature). In vivo 23Na-MRSI showed Na+ i remained unshifted and Na+ b was more shifted than Na+ e, and these together revealed weakened ΔNa+ mem and enhanced ΔNa+ end in rat gliomas (vs. normal tissue). Compared to normal tissue, RG2 and U87 tumors maintained weakened ΔNa+ mem (i.e., depolarized V m ) implying an aggressive state for proliferation, whereas RG2 tumors displayed elevated ∆Na+ end suggesting altered BBB integrity. We anticipate that 23Na-MRSI will allow biomedical explorations of perturbed Na+ homeostasis in vivo.
format article
author Muhammad H. Khan
John J. Walsh
Jelena M. Mihailović
Sandeep K. Mishra
Daniel Coman
Fahmeed Hyder
author_facet Muhammad H. Khan
John J. Walsh
Jelena M. Mihailović
Sandeep K. Mishra
Daniel Coman
Fahmeed Hyder
author_sort Muhammad H. Khan
title Imaging the transmembrane and transendothelial sodium gradients in gliomas
title_short Imaging the transmembrane and transendothelial sodium gradients in gliomas
title_full Imaging the transmembrane and transendothelial sodium gradients in gliomas
title_fullStr Imaging the transmembrane and transendothelial sodium gradients in gliomas
title_full_unstemmed Imaging the transmembrane and transendothelial sodium gradients in gliomas
title_sort imaging the transmembrane and transendothelial sodium gradients in gliomas
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0b22d92edfa14ae2a68ade6c68957ff3
work_keys_str_mv AT muhammadhkhan imagingthetransmembraneandtransendothelialsodiumgradientsingliomas
AT johnjwalsh imagingthetransmembraneandtransendothelialsodiumgradientsingliomas
AT jelenammihailovic imagingthetransmembraneandtransendothelialsodiumgradientsingliomas
AT sandeepkmishra imagingthetransmembraneandtransendothelialsodiumgradientsingliomas
AT danielcoman imagingthetransmembraneandtransendothelialsodiumgradientsingliomas
AT fahmeedhyder imagingthetransmembraneandtransendothelialsodiumgradientsingliomas
_version_ 1718383615443730432