Metal artefact reduction of different alloys with dual energy computed tomography (DECT)

Abstract To evaluate the influence of dual-energy CT (DECT) and Virtual monochromatic spectral (VMS) imaging on: (1) the artefact size of geometrically identical orthopaedic implants consisting of three different compositions and (2) the image quality of the surrounding bone, three similar phantoms—...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anand John Vellarackal, Achim Hermann Kaim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0b2df843406240b6ad705f332d120ded
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract To evaluate the influence of dual-energy CT (DECT) and Virtual monochromatic spectral (VMS) imaging on: (1) the artefact size of geometrically identical orthopaedic implants consisting of three different compositions and (2) the image quality of the surrounding bone, three similar phantoms—each featuring one femoral stem composed of either titanium, chrome-cobalt or stainless steel surrounded by five calcium pellets (200 mg hydroxyapatite/calcium carbonate) to simulate bony tissue and one reference pellet located away from the femoral stem—were built. DECT with two sequential scans (80 kVp and 140 kVp; scan-to-scan technique) was performed, and VMS images were calculated between 40 and 190 keV. The artefact sizes were measured volumetrically by semiautomatic selection of regions of interest (ROIs), considering the VMS energies and the polychromatic spectres. Moreover, density and image noise within the pellets were measured. All three phantoms exhibit artefact size reduction as energy increases from 40 to 190 keV. Titanium exhibited a stronger reduction than chrome-cobalt and stainless steel. The artefacts were dependent on the diameter of the stem. Image quality increases with higher energies on VMS with a better depiction of surrounding structures. Monoenergetic energies 70 keV and 140 keV demonstrate superior image quality to those produced by spectral energies 80 kVp and 140 kVp.