DeepLabStream enables closed-loop behavioral experiments using deep learning-based markerless, real-time posture detection
DeepLabStream, developed by Schweihoff and colleagues, is a deep-learning based toolkit to conduct closed-loop behavioral experiments triggered by postural expressions. The capabilities of this new toolkit are shown in an optogenetic stimulation experiment capturing activity dependent neuronal ensem...
Guardado en:
Autores principales: | Jens F. Schweihoff, Matvey Loshakov, Irina Pavlova, Laura Kück, Laura A. Ewell, Martin K. Schwarz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0b703c96fcda4d4aacde89d962e46ac8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimal closed-loop deep brain stimulation using multiple independently controlled contacts.
por: Gihan Weerasinghe, et al.
Publicado: (2021) -
Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases
por: Oleksandr V. Popovych, et al.
Publicado: (2017) -
Deep learning to predict the lab-of-origin of engineered DNA
por: Alec A. K. Nielsen, et al.
Publicado: (2018) -
Controlling Clinical States Governed by Different Temporal Dynamics With Closed-Loop Deep Brain Stimulation: A Principled Framework
por: Gerd Tinkhauser, et al.
Publicado: (2021) -
Markerless tracking of an entire honey bee colony
por: Katarzyna Bozek, et al.
Publicado: (2021)