Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer
Typically, the main control on alternating current (AC) power systems is performed by the scheduling of rotary machines of synchronous generators and static machines of on-load tap changer (OLTC) transformers and volt-ampere reactive (VAR) sources. Large machines of synchronous generators can be man...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0b709fffca7e471caaef5c9621c1ffc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0b709fffca7e471caaef5c9621c1ffc3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0b709fffca7e471caaef5c9621c1ffc32021-11-11T19:37:44ZScheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer10.3390/su1321119472071-1050https://doaj.org/article/0b709fffca7e471caaef5c9621c1ffc32021-10-01T00:00:00Zhttps://www.mdpi.com/2071-1050/13/21/11947https://doaj.org/toc/2071-1050Typically, the main control on alternating current (AC) power systems is performed by the scheduling of rotary machines of synchronous generators and static machines of on-load tap changer (OLTC) transformers and volt-ampere reactive (VAR) sources. Large machines of synchronous generators can be managed by utilizing terminal voltage control when synchronized in parallel to the power system. These machines are typically terminal voltage regulated. In addition, substation on-load tap changer (OLTC) transformers improve system voltage management by controlling variable turn ratios that are adjusted in different levels known as taps along either the primary or secondary winding. Moreover, volt-ampere reactive (VAR) sources of static VAR compensators (SVCs), which are automated impedance devices connected to the AC power network, are designed for voltage regulation and system stabilization. In this paper, scheduling of these machines is coordinated for optimal power system operation (OPSO) using a recent algorithm of social network search optimizer (SNSO). The OPSO is performed by achieving many optimization targets of cost of fuel, power losses, and polluting emissions. The SNS is a recent optimizer that is inspired from users in social networks throughout the different moods of users such as imitation, conversation, disputation, and innovation mood. The SNSO is developed for handling the OPSO problem and applied on an IEEE standardized 57-bus power system and real Egyptian power system of the West Delta area. The developed SNSO is used in various assessments and quantitative analyses with various contemporary techniques. The simulated findings prove the developed SNSO’s solution accuracy and resilience when compared to other relevant techniques in the literature.Ragab El-SehiemyAbdallah ElsayedAbdullah ShaheenEhab ElattarAhmed GinidiMDPI AGarticleoptimal power flowsocial network search algorithmelectrical power gridspower lossesfuel costsemissionsEnvironmental effects of industries and plantsTD194-195Renewable energy sourcesTJ807-830Environmental sciencesGE1-350ENSustainability, Vol 13, Iss 11947, p 11947 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
optimal power flow social network search algorithm electrical power grids power losses fuel costs emissions Environmental effects of industries and plants TD194-195 Renewable energy sources TJ807-830 Environmental sciences GE1-350 |
spellingShingle |
optimal power flow social network search algorithm electrical power grids power losses fuel costs emissions Environmental effects of industries and plants TD194-195 Renewable energy sources TJ807-830 Environmental sciences GE1-350 Ragab El-Sehiemy Abdallah Elsayed Abdullah Shaheen Ehab Elattar Ahmed Ginidi Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer |
description |
Typically, the main control on alternating current (AC) power systems is performed by the scheduling of rotary machines of synchronous generators and static machines of on-load tap changer (OLTC) transformers and volt-ampere reactive (VAR) sources. Large machines of synchronous generators can be managed by utilizing terminal voltage control when synchronized in parallel to the power system. These machines are typically terminal voltage regulated. In addition, substation on-load tap changer (OLTC) transformers improve system voltage management by controlling variable turn ratios that are adjusted in different levels known as taps along either the primary or secondary winding. Moreover, volt-ampere reactive (VAR) sources of static VAR compensators (SVCs), which are automated impedance devices connected to the AC power network, are designed for voltage regulation and system stabilization. In this paper, scheduling of these machines is coordinated for optimal power system operation (OPSO) using a recent algorithm of social network search optimizer (SNSO). The OPSO is performed by achieving many optimization targets of cost of fuel, power losses, and polluting emissions. The SNS is a recent optimizer that is inspired from users in social networks throughout the different moods of users such as imitation, conversation, disputation, and innovation mood. The SNSO is developed for handling the OPSO problem and applied on an IEEE standardized 57-bus power system and real Egyptian power system of the West Delta area. The developed SNSO is used in various assessments and quantitative analyses with various contemporary techniques. The simulated findings prove the developed SNSO’s solution accuracy and resilience when compared to other relevant techniques in the literature. |
format |
article |
author |
Ragab El-Sehiemy Abdallah Elsayed Abdullah Shaheen Ehab Elattar Ahmed Ginidi |
author_facet |
Ragab El-Sehiemy Abdallah Elsayed Abdullah Shaheen Ehab Elattar Ahmed Ginidi |
author_sort |
Ragab El-Sehiemy |
title |
Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer |
title_short |
Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer |
title_full |
Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer |
title_fullStr |
Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer |
title_full_unstemmed |
Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer |
title_sort |
scheduling of generation stations, oltc substation transformers and var sources for sustainable power system operation using sns optimizer |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/0b709fffca7e471caaef5c9621c1ffc3 |
work_keys_str_mv |
AT ragabelsehiemy schedulingofgenerationstationsoltcsubstationtransformersandvarsourcesforsustainablepowersystemoperationusingsnsoptimizer AT abdallahelsayed schedulingofgenerationstationsoltcsubstationtransformersandvarsourcesforsustainablepowersystemoperationusingsnsoptimizer AT abdullahshaheen schedulingofgenerationstationsoltcsubstationtransformersandvarsourcesforsustainablepowersystemoperationusingsnsoptimizer AT ehabelattar schedulingofgenerationstationsoltcsubstationtransformersandvarsourcesforsustainablepowersystemoperationusingsnsoptimizer AT ahmedginidi schedulingofgenerationstationsoltcsubstationtransformersandvarsourcesforsustainablepowersystemoperationusingsnsoptimizer |
_version_ |
1718431449348046848 |