Numerical validation of probabilistic laws to evaluate finite element error estimates

We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jöel Chaskalovic, Franck Assous
Formato: article
Lenguaje:EN
Publicado: Vilnius Gediminas Technical University 2021
Materias:
Acceso en línea:https://doaj.org/article/0b886095559a4d3dbbc82abc0ed78705
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate.