Numerical validation of probabilistic laws to evaluate finite element error estimates
We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the t...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Vilnius Gediminas Technical University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0b886095559a4d3dbbc82abc0ed78705 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0b886095559a4d3dbbc82abc0ed78705 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0b886095559a4d3dbbc82abc0ed787052021-11-29T09:14:00ZNumerical validation of probabilistic laws to evaluate finite element error estimates1392-62921648-351010.3846/mma.2021.14079https://doaj.org/article/0b886095559a4d3dbbc82abc0ed787052021-11-01T00:00:00Zhttps://journals.vgtu.lt/index.php/MMA/article/view/14079https://doaj.org/toc/1392-6292https://doaj.org/toc/1648-3510We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate.Jöel ChaskalovicFranck AssousVilnius Gediminas Technical Universityarticlenumerical validationerror estimatesfinite elementsbramble-hilbert lemmaprobabilityMathematicsQA1-939ENMathematical Modelling and Analysis, Vol 26, Iss 4, Pp 684-695 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
numerical validation error estimates finite elements bramble-hilbert lemma probability Mathematics QA1-939 |
spellingShingle |
numerical validation error estimates finite elements bramble-hilbert lemma probability Mathematics QA1-939 Jöel Chaskalovic Franck Assous Numerical validation of probabilistic laws to evaluate finite element error estimates |
description |
We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate. |
format |
article |
author |
Jöel Chaskalovic Franck Assous |
author_facet |
Jöel Chaskalovic Franck Assous |
author_sort |
Jöel Chaskalovic |
title |
Numerical validation of probabilistic laws to evaluate finite element error estimates |
title_short |
Numerical validation of probabilistic laws to evaluate finite element error estimates |
title_full |
Numerical validation of probabilistic laws to evaluate finite element error estimates |
title_fullStr |
Numerical validation of probabilistic laws to evaluate finite element error estimates |
title_full_unstemmed |
Numerical validation of probabilistic laws to evaluate finite element error estimates |
title_sort |
numerical validation of probabilistic laws to evaluate finite element error estimates |
publisher |
Vilnius Gediminas Technical University |
publishDate |
2021 |
url |
https://doaj.org/article/0b886095559a4d3dbbc82abc0ed78705 |
work_keys_str_mv |
AT joelchaskalovic numericalvalidationofprobabilisticlawstoevaluatefiniteelementerrorestimates AT franckassous numericalvalidationofprobabilisticlawstoevaluatefiniteelementerrorestimates |
_version_ |
1718407385636143104 |