Numerical validation of probabilistic laws to evaluate finite element error estimates

We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jöel Chaskalovic, Franck Assous
Formato: article
Lenguaje:EN
Publicado: Vilnius Gediminas Technical University 2021
Materias:
Acceso en línea:https://doaj.org/article/0b886095559a4d3dbbc82abc0ed78705
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0b886095559a4d3dbbc82abc0ed78705
record_format dspace
spelling oai:doaj.org-article:0b886095559a4d3dbbc82abc0ed787052021-11-29T09:14:00ZNumerical validation of probabilistic laws to evaluate finite element error estimates1392-62921648-351010.3846/mma.2021.14079https://doaj.org/article/0b886095559a4d3dbbc82abc0ed787052021-11-01T00:00:00Zhttps://journals.vgtu.lt/index.php/MMA/article/view/14079https://doaj.org/toc/1392-6292https://doaj.org/toc/1648-3510We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate.Jöel ChaskalovicFranck AssousVilnius Gediminas Technical Universityarticlenumerical validationerror estimatesfinite elementsbramble-hilbert lemmaprobabilityMathematicsQA1-939ENMathematical Modelling and Analysis, Vol 26, Iss 4, Pp 684-695 (2021)
institution DOAJ
collection DOAJ
language EN
topic numerical validation
error estimates
finite elements
bramble-hilbert lemma
probability
Mathematics
QA1-939
spellingShingle numerical validation
error estimates
finite elements
bramble-hilbert lemma
probability
Mathematics
QA1-939
Jöel Chaskalovic
Franck Assous
Numerical validation of probabilistic laws to evaluate finite element error estimates
description We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate.
format article
author Jöel Chaskalovic
Franck Assous
author_facet Jöel Chaskalovic
Franck Assous
author_sort Jöel Chaskalovic
title Numerical validation of probabilistic laws to evaluate finite element error estimates
title_short Numerical validation of probabilistic laws to evaluate finite element error estimates
title_full Numerical validation of probabilistic laws to evaluate finite element error estimates
title_fullStr Numerical validation of probabilistic laws to evaluate finite element error estimates
title_full_unstemmed Numerical validation of probabilistic laws to evaluate finite element error estimates
title_sort numerical validation of probabilistic laws to evaluate finite element error estimates
publisher Vilnius Gediminas Technical University
publishDate 2021
url https://doaj.org/article/0b886095559a4d3dbbc82abc0ed78705
work_keys_str_mv AT joelchaskalovic numericalvalidationofprobabilisticlawstoevaluatefiniteelementerrorestimates
AT franckassous numericalvalidationofprobabilisticlawstoevaluatefiniteelementerrorestimates
_version_ 1718407385636143104