A predictive internet-based model for COVID-19 hospitalization census
Abstract The COVID-19 pandemic has strained hospital resources and necessitated the need for predictive models to forecast patient care demands in order to allow for adequate staffing and resource allocation. Recently, other studies have looked at associations between Google Trends data and the numb...
Guardado en:
Autores principales: | Philip J. Turk, Thao P. Tran, Geoffrey A. Rose, Andrew McWilliams |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0b9a79667419436aa889c369618e0cf4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: A predictive internet-based model for COVID-19 hospitalization census
por: Philip J. Turk, et al.
Publicado: (2021) -
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
por: Narges Razavian, et al.
Publicado: (2020) -
Urine biomarkers for the prediction of mortality in COVID-19 hospitalized patients
por: Daniel Morell-Garcia, et al.
Publicado: (2021) -
The COVID-19 lab score: an accurate dynamic tool to predict in-hospital outcomes in COVID-19 patients
por: Pablo Jose Antunez Muiños, et al.
Publicado: (2021) -
How Internet of Things responds to the COVID-19 pandemic
por: Taher A. Ghaleb, et al.
Publicado: (2021)