ANMAF: an automated neuronal morphology analysis framework using convolutional neural networks
Abstract Measurement of neuronal size is challenging due to their complex histology. Current practice includes manual or pseudo-manual measurement of somatic areas, which is labor-intensive and prone to human biases and intra-/inter-observer variances. We developed a novel high-throughput neuronal m...
Guardado en:
Autores principales: | Ling Tong, Rachel Langton, Joseph Glykys, Stephen Baek |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0b9ac4da742b4e18b54c5254bb314861 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated stomata detection in oil palm with convolutional neural network
por: Qi Bin Kwong, et al.
Publicado: (2021) -
Automated spectroscopic modelling with optimised convolutional neural networks
por: Zefang Shen, et al.
Publicado: (2021) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sajith Kecheril Sadanandan, et al.
Publicado: (2017) -
Workflow and convolutional neural network for automated identification of animal sounds
por: Zachary J. Ruff, et al.
Publicado: (2021) -
Crack recognition automation in concrete bridges using Deep Convolutional Neural Networks
por: Zoubir Hajar, et al.
Publicado: (2021)