Noncentral forces mediated between two inclusions in a bath of active Brownian rods

Abstract Using Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that the self-propulsion axis of the rods may...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mahmoud Sebtosheikh, Ali Naji
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0b9c09cfd21643e3843ad1d25255cf90
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Using Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that the self-propulsion axis of the rods may generally deviate from their longitudinal axis. When the self-propulsion is transverse (perpendicular to the rod axis), the accumulation of active rods around the inclusions is significantly enhanced, causing a more expansive steric layering (ring formation) of the rods around the inclusions, as compared with the reference case of longitudinally self-propelling rods. As a result, the transversally self-propelling rods also mediate a significantly longer ranged effective interaction between the inclusions. The bath-mediated interaction arises due to the overlaps between the active-rod rings formed around the inclusions, as they are brought into small separations. When the self-propulsion axis is tilted relative to the rod axis, we find an asymmetric imbalance of active-rod accumulation around the inclusion dimer. This leads to a noncentral interaction, featuring an anti-parallel pair of transverse force components and, hence, a bath-mediated torque on the dimer.