Geometry of turbulent dissipation and the Navier–Stokes regularity problem
Abstract The question of whether a singularity can form in an initially regular flow, described by the 3D incompressible Navier–Stokes (NS) equations, is a fundamental problem in mathematical physics. The NS regularity problem is super-critical, i.e., there is a ‘scaling gap’ between what can be est...
Guardado en:
Autores principales: | Janet Rafner, Zoran Grujić, Christian Bach, Jakob Andreas Bærentzen, Bo Gervang, Ruo Jia, Scott Leinweber, Marek Misztal, Jacob Sherson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ba91c502e23493995c73a0c85e2448f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-attenuation of extreme events in Navier–Stokes turbulence
por: Dhawal Buaria, et al.
Publicado: (2020) -
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
por: Nguyen Anh Dao, et al.
Publicado: (2021) -
Well-posedness analysis of a stationary Navier–Stokes hemivariational inequality
por: Min Ling, et al.
Publicado: (2021) -
Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes
por: Albeverio,S, et al.
Publicado: (2010) -
On singular solutions of the stationary Navier-Stokes system in power cusp domains
por: Konstantinas Pileckas, et al.
Publicado: (2021)