ECNet is an evolutionary context-integrated deep learning framework for protein engineering

Protein engineering is an active area of research in which machine learning has proven quite powerful. Here, the authors present a deep learning method that integrates both general and protein-specific sequence representations to improve the engineering of one’s protein of interest.

Guardado en:
Detalles Bibliográficos
Autores principales: Yunan Luo, Guangde Jiang, Tianhao Yu, Yang Liu, Lam Vo, Hantian Ding, Yufeng Su, Wesley Wei Qian, Huimin Zhao, Jian Peng
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/0bb0a79962b04f8bba4f09b68761698c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0bb0a79962b04f8bba4f09b68761698c
record_format dspace
spelling oai:doaj.org-article:0bb0a79962b04f8bba4f09b68761698c2021-12-02T17:37:36ZECNet is an evolutionary context-integrated deep learning framework for protein engineering10.1038/s41467-021-25976-82041-1723https://doaj.org/article/0bb0a79962b04f8bba4f09b68761698c2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25976-8https://doaj.org/toc/2041-1723Protein engineering is an active area of research in which machine learning has proven quite powerful. Here, the authors present a deep learning method that integrates both general and protein-specific sequence representations to improve the engineering of one’s protein of interest.Yunan LuoGuangde JiangTianhao YuYang LiuLam VoHantian DingYufeng SuWesley Wei QianHuimin ZhaoJian PengNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yunan Luo
Guangde Jiang
Tianhao Yu
Yang Liu
Lam Vo
Hantian Ding
Yufeng Su
Wesley Wei Qian
Huimin Zhao
Jian Peng
ECNet is an evolutionary context-integrated deep learning framework for protein engineering
description Protein engineering is an active area of research in which machine learning has proven quite powerful. Here, the authors present a deep learning method that integrates both general and protein-specific sequence representations to improve the engineering of one’s protein of interest.
format article
author Yunan Luo
Guangde Jiang
Tianhao Yu
Yang Liu
Lam Vo
Hantian Ding
Yufeng Su
Wesley Wei Qian
Huimin Zhao
Jian Peng
author_facet Yunan Luo
Guangde Jiang
Tianhao Yu
Yang Liu
Lam Vo
Hantian Ding
Yufeng Su
Wesley Wei Qian
Huimin Zhao
Jian Peng
author_sort Yunan Luo
title ECNet is an evolutionary context-integrated deep learning framework for protein engineering
title_short ECNet is an evolutionary context-integrated deep learning framework for protein engineering
title_full ECNet is an evolutionary context-integrated deep learning framework for protein engineering
title_fullStr ECNet is an evolutionary context-integrated deep learning framework for protein engineering
title_full_unstemmed ECNet is an evolutionary context-integrated deep learning framework for protein engineering
title_sort ecnet is an evolutionary context-integrated deep learning framework for protein engineering
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0bb0a79962b04f8bba4f09b68761698c
work_keys_str_mv AT yunanluo ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT guangdejiang ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT tianhaoyu ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT yangliu ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT lamvo ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT hantianding ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT yufengsu ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT wesleyweiqian ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT huiminzhao ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
AT jianpeng ecnetisanevolutionarycontextintegrateddeeplearningframeworkforproteinengineering
_version_ 1718379864998805504